Skip to main content

Self-stabilizing Snapshot Objects for Asynchronous Failure-Prone Networked Systems

  • Conference paper
  • First Online:
Networked Systems (NETYS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11704))

Included in the following conference series:

Abstract

A snapshot object simulates the behavior of an array of single-writer/multi-reader shared registers that can be read atomically. Delporte-Gallet et al. proposed two fault-tolerant algorithms for snapshot objects in asynchronous crash-prone message-passing systems. Their first algorithm is non-blocking; it allows snapshot operations to terminate once all write operations had ceased. It uses \(\mathcal {O}(n)\) messages of \(\mathcal {O}(n \cdot \nu )\) bits, where n is the number of nodes and \(\nu \) is the number of bits it takes to represent the object. Their second algorithm allows snapshot operations to always terminate independently of write operations. It incurs \(\mathcal {O}(n^2)\) messages. The fault model of Delporte-Gallet et al. considers node failures (crashes). We aim at the design of even more robust snapshot objects. We do so through the lenses of self-stabilization—a very strong notion of fault-tolerance. In addition to Delporte-Gallet et al. ’s fault model, a self-stabilizing algorithm can recover after the occurrence of transient faults; these faults represent arbitrary violations of the assumptions according to which the system was designed to operate (as long as the code stays intact). In particular, in this work, we propose self-stabilizing variations of Delporte-Gallet et al. ’s non-blocking algorithm and always-terminating algorithm. Our algorithms have similar communication costs to the ones by Delporte-Gallet et al. and \(\mathcal {O}(1)\) recovery time (in terms of asynchronous cycles) from transient faults. The main differences are that our proposal considers repeated gossiping of \(\mathcal {O}(\nu )\) bits messages and deals with bounded space, which is a prerequisite for self-stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)

    Article  Google Scholar 

  2. Anderson, J.H.: Multi-writer composite registers. Distrib. Comput. 7(4), 175–195 (1994)

    Article  MathSciNet  Google Scholar 

  3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  Google Scholar 

  4. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. J. ACM 42(1), 124–142 (1995)

    Article  Google Scholar 

  6. Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Implementing snapshot objects on top of crash-prone asynchronous message-passing systems. IEEE Trans. Parallel Distrib. Syst. 29(9), 2033–2045 (2018)

    Article  Google Scholar 

  7. Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Practically stabilizing SWMR atomic memory in message-passing systems. J. Comput. Syst. Sci. 81(4), 692–701 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dolev, S., Petig, T., Schiller, E.M.: Self-stabilizing and private distributed shared atomic memory in seldomly fair message passing networks. CoRR abs/1806.03498 (2018)

    Google Scholar 

  9. Georgiou, C., Lundström, O., Schiller, E.M.: Self-stabilizing snapshot objects for asynchronous failure-prone networked systems. CoRR (2019)

    Google Scholar 

  10. Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing: Algorithms and Complexity. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2011)

    Google Scholar 

  11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  12. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local checking and global reset. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 326–339. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0020443

    Chapter  Google Scholar 

  13. Imbs, D., Mostéfaoui, A., Perrin, M., Raynal, M.: Set-constrained delivery broadcast: Definition, abstraction power, and computability limits. In: 19th Distributed Computing and Networking, ICDCN, ACM (2018) 7:1–7:10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elad Michael Schiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georgiou, C., Lundström, O., Schiller, E.M. (2019). Self-stabilizing Snapshot Objects for Asynchronous Failure-Prone Networked Systems. In: Atig, M., Schwarzmann, A. (eds) Networked Systems. NETYS 2019. Lecture Notes in Computer Science(), vol 11704. Springer, Cham. https://doi.org/10.1007/978-3-030-31277-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31277-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31276-3

  • Online ISBN: 978-3-030-31277-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics