Classification of Multibeam Sonar Image Using the Weyl Transform
Conference paper
First Online:
- 357 Downloads
Abstract
In this paper we develop a novel classification method for multibeam sonar images based on the Weyl transform. The texture descriptor based on Weyl coefficients describes effectively the multiscale correlation features appearing in the sonar images. Our classification approach combines the Weyl coefficients with statistical features that are commonly used in the analysis of seabed sonar images and captures the morphological variation and geoacoustic characteristics of the seafloor. We employ a neural network as a classifier. The proposed combined feature extraction method demonstrates better performance than the commonly used statistical methods in this application.
Keywords
Multibeam data processing Multibeam sonar image Feature extraction Weyl transform Acoustic sediment classificationReferences
- 1.Gaida, T., Tengku, A.T., Snellen, M., Amiri-Simkooei, A., Van Dijk, T., Simons, D.: Geosciences 8, 455 (2018)CrossRefGoogle Scholar
- 2.Montereale-Gavazzi, G., Roche, M., Lurton, X., Degrendele, K., Terseleer, N., Van Lancker, V.: Mar. Geophys. Res. 39, 229–247 (2018)CrossRefGoogle Scholar
- 3.Diesing, M., Mitchell, P., Stephens, D.: ICES J. Mar. Sci. 73, 2425–2441 (2016)CrossRefGoogle Scholar
- 4.Brown, C.J., Smith, S.J., Lawton, P., Anderson, J.T.: Estuarine, coastal and shelf. Science 92, 502–520 (2011)Google Scholar
- 5.Nguyen, T.K.: Seafloor classification with a multi-swath multi-beam echo sounder. Ph.D. thesis, Ecole nationale supérieure Mines-Télécom Atlantique, Nantes (2017)Google Scholar
- 6.Janowski, Ł., Tęgowski, J., Nowak, J.: Ocean. Hydrobiol. Stud. 47, 248–259 (2018)CrossRefGoogle Scholar
- 7.Haralick, R.M., Shanmugam, K., Dinstein, I.H.: IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)Google Scholar
- 8.Qiu, Q., Thompson, A., Calderbank, R., Sapiro, G.: IEEE Trans. Signal Process. 64, 1844–1853 (2016)MathSciNetCrossRefGoogle Scholar
- 9.Ahn, H.K., Qiu, Q., Bosch, E., Thompson, A., Robles, F.E., Sapiro, G., Warren, W.S., Calderbank, R.: Classifying pump-probe images of melanocytic lesions using the Weyl transform. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Alberta, Canada. IEEE (2018)Google Scholar
- 10.Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision and Pattern Recognition (CVPR 2005). IEEE Computer Society, San Diego (2005)Google Scholar
- 11.Marko, H., Matti, P.: IEEE Trans. Pattern Anal. Mach. Intell. 28, 657–662 (2006)CrossRefGoogle Scholar
- 12.Howard, S.D., Calderbank, A.R., Moran, W.: J. Appl. Signal Process. 2006, 111 (2006)Google Scholar
- 13.Wilson, M.F., O’Connell, B., Brown, C., Guinan, J.C., Grehan, A.J.: Mar. Geodesy 30, 3–35 (2007)CrossRefGoogle Scholar
- 14.Walbridge, S., Slocum, N., Pobuda, M., Wright, D.: Geosciences 8, 94 (2018)CrossRefGoogle Scholar
- 15.Kursa, M.B., Rudnicki, W.R.: J. Stat. Softw. 36, 1–13 (2010)CrossRefGoogle Scholar
- 16.Kongsberg Maritime. EM 2040 data sheet (2012)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2020