Skip to main content

Hematopoietic Stem and Progenitor Cells (HSPCs)

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1201))

Abstract

Hematopoietic stem/progenitor cells (HSPCs) isolated from bone marrow have been successfully employed for 50 years in hematological transplantations. Currently, these cells are more frequently isolated from mobilized peripheral blood or umbilical cord blood. In this chapter, we overview several topics related to these cells including their phenotype, methods for isolation, and in vitro and in vivo assays to evaluate their proliferative potential. The successful clinical application of HSPCs is widely understood to have helped establish the rationale for the development of stem cell therapies and regenerative medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kumar B, Madabushi SS (2018) Identification and isolation of mice and human hematopoietic stem cells. Methods Mol Biol 1842:55–68. https://doi.org/10.1007/978-1-4939-8697-2_4

    Article  CAS  PubMed  Google Scholar 

  2. Robertson AL, Avagyan S, Gansner JM, Zon LI (2016) Understanding the regulation of vertebrate hematopoiesis and blood disorders - big lessons from a small fish. FEBS Lett 590(22):4016–4033. https://doi.org/10.1002/1873-3468.12415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perie L, Duffy KR (2016) Retracing the in vivo haematopoietic tree using single-cell methods. FEBS Lett 590:4068–4083. https://doi.org/10.1002/1873-3468.12299

    Article  CAS  PubMed  Google Scholar 

  4. Laurenti E, Göttgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553(7689):418–426. https://doi.org/10.1038/nature25022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eaves CJ (2015) Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125(17):2605–2613. https://doi.org/10.1182/blood-2014-12-570200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Proserpio V, Lönnberg T (2016) Single-cell technologies are revolutionizing the approach to rare cells. Immunol Cell Biol 94(3):225–229. https://doi.org/10.1038/icb.2015.106

    Article  CAS  PubMed  Google Scholar 

  7. Perry JM, Li L (2010) Functional assays for hematopoietic stem cell self-renewal. Methods Mol Biol 636:45–54. https://doi.org/10.1007/978-1-60761-691-7

    Article  PubMed  Google Scholar 

  8. Brown G, Tsapogas P, Ceredig R (2018) The changing face of hematopoiesis: a spectrum of options is available to stem cells. Immunol Cell Biol 96(9):898–911. https://doi.org/10.1111/imcb.12055

    Article  PubMed  Google Scholar 

  9. Babovic S, Eaves CJ (2014) Hierarchical organization of fetal and adult hematopoietic stem cells. Exp Cell Res 329(2):185–191. https://doi.org/10.1016/j.yexcr.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Gao S, Xia J, Liu F (2018) Hematopoietic hierarchy – an updated roadmap. Trends Cell Biol 28(12):976–986. https://doi.org/10.1016/j.tcb.2018.06.001

    Article  PubMed  Google Scholar 

  11. Takeuchi M, Sekiguchi T, Hara T, Kinoshita T, Miyajima A (2002) Cultivation of aorta-gonad-mesonephros-derived hematopoietic stem cells in the fetal liver microenvironment amplifies long-term repopulating activity and enhances engraftment to the bone marrow. Blood 99(4):1190–1196

    Article  CAS  PubMed  Google Scholar 

  12. Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133(19):3733–3744

    Article  CAS  PubMed  Google Scholar 

  13. Mahony CB, Bertrand JY (2019) How HSCs colonize and expand in the fetal niche of the vertebrate embryo: an evolutionary perspective. Front Cell Dev Biol 7:34. https://doi.org/10.3389/fcell.2019.00034

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ciriza J, Thompson H, Petrosian R, Manilay JO, García-Ojeda ME (2013) The migration of hematopoietic progenitors from the fetal liver to the fetal bone marrow: lessons learned and possible clinical applications. Exp Hematol 41(5):411–423. https://doi.org/10.1016/j.exphem.2013.01.009

    Article  PubMed  Google Scholar 

  15. Klaus A, Robin C (2017) Embryonic hematopoiesis under microscopic observation. Dev Biol 428(2):318–327. https://doi.org/10.1016/j.ydbio.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  16. Gao X, Xu C, Asada N, Frenette PS (2018) The hematopoietic stem cell niche: from embryo to adult. Development 145(2). pii: dev139691. https://doi.org/10.1242/dev.139691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457(7231):892–895. https://doi.org/10.1038/nature07679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125(4):725–732

    CAS  PubMed  Google Scholar 

  19. Liu YJ, Lu SH, Xu B, Yang RC, Ren Q, Liu B, Li B, Lu M, Yan FY, Han ZB, Han ZC (2004) Hemangiopoietin, a novel human growth factor for the primitive cells of both hematopoietic and endothelial cell lineages. Blood 103(12):4449–4456

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, Martin T, Rouleau A, Bhatia M (2004) Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21(1):31–41

    Article  CAS  PubMed  Google Scholar 

  21. Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7(3):380–390. https://doi.org/10.1016/j.stem.2010.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura-Ishizu A, Takizawa H, Suda T (2014) The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 141(24):4656–4666. https://doi.org/10.1242/dev.106575

    Article  CAS  PubMed  Google Scholar 

  23. Gallacher L, Murdoch B, Wu DM (2000) Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95:2813–2820

    Article  CAS  PubMed  Google Scholar 

  24. Akunuru S, Geiger H (2016) Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends Mol Med 22(8):701–712. https://doi.org/10.1016/j.molmed.2016.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chung SS, Park CY (2017) Aging, hematopoiesis, and the myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program 1:73–78. https://doi.org/10.1182/asheducation-2017.1.73

    Article  Google Scholar 

  26. Elias HK, Bryder D, Park CY (2016) Molecular mechanisms underlying lineage bias in aging hematopoiesis. Semin Hematol 54(1):4–11. https://doi.org/10.1053/j.seminhematol.2016.11.002

    Article  PubMed  Google Scholar 

  27. Hiroyama T, Miharada K, Aoki N (2006) Long-lasting in vitro hematopoiesis derived from primate embryonic stem cells. Exp Hematol 34:760–767

    Article  CAS  PubMed  Google Scholar 

  28. Yoder MC (2004) Generation of HSCs in the embryo and assays to detect them. Oncogene 23:7161–7163

    Article  CAS  PubMed  Google Scholar 

  29. Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, Lindskog D, Kaplan JL, Ables G, Rodeheffer MS, Rosen CJ (2017) Bone marrow adipocytes. Adipocytes 6(3):193–204. https://doi.org/10.1080/21623945.2017.1367881

    Article  CAS  Google Scholar 

  30. Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34(5):548–565

    Article  PubMed  Google Scholar 

  31. Morita Y, Iseki A, Okamura S, Suzuki S, Nakauchi H, Ema H (2011) Functional characterization of hematopoietic stem cells in the spleen. Exp Hematol 39(3):351–359.e3. https://doi.org/10.1016/j.exphem.2010.12.008

    Article  PubMed  Google Scholar 

  32. de Abreu Manso PP, de Brito-Gitirana L, Pelajo-Machado M (2009) Localization of hematopoietic cells in the bullfrog (Lithobates catesbeianus). Cell Tissue Res 337(2):301–312. https://doi.org/10.1007/s00441-009-0803-0

    Article  CAS  PubMed  Google Scholar 

  33. Bertrand JY, Kim AD, Teng S, Traver D (2008) CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 35(10):1853–1862. https://doi.org/10.1242/dev.015297

    Article  CAS  Google Scholar 

  34. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421

    Article  CAS  PubMed  Google Scholar 

  35. Budkowska M, Ostrycharz E, Wojtowicz A, Marcinowska Z, Woźniak J, Ratajczak MZ, Dołęgowska B (2018) A circadian rhythm in both complement cascade (ComC) activation and sphingosine-1-phosphate (S1P) levels in human peripheral blood supports a role for the ComC-S1P axis in circadian changes in the number of stem cells circulating in peripheral blood. Stem Cell Rev 14(5):677–685. https://doi.org/10.1007/s12015-018-9836-7

    Article  CAS  PubMed Central  Google Scholar 

  36. Giudice A, Caraglia M, Marra M, Montella M, Maurea N, Abbruzzese A (2010) Circadian rhythms, adrenergic hormones and trafficking of hematopoietic stem cells. Expert Opin Ther Targets 14:567–575. https://doi.org/10.1517/14728221003769887

    Article  CAS  PubMed  Google Scholar 

  37. Wojakowski W, Landmesser U, Bachowski R, Jadczyk T, Tendera M (2012) Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia 26(1):23–33. https://doi.org/10.1038/leu.2011.184

    Article  CAS  PubMed  Google Scholar 

  38. Borlongan CV (2011) Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all! Leukemia 25(11):1674–1686. https://doi.org/10.1038/leu.2011.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Greenbaum AM, Link DC (2011) Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 25(2):211–217. https://doi.org/10.1038/leu.2010.248

    Article  CAS  PubMed  Google Scholar 

  40. Winkler IG, Wiercinska E, Barbier V, Nowlan B, Bonig H, Levesque JP (2016) Mobilization of hematopoietic stem cells with highest self-renewal by G-CSF precedes clonogenic cell mobilization peak. Exp Hematol 44(4):303–14.e1. https://doi.org/10.1016/j.exphem.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  41. Rettig MP, Ansstas G, DiPersio JF (2012) Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA4. Leukemia 1:34–53. https://doi.org/10.1038/leu.2011.197

    Article  CAS  Google Scholar 

  42. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwasaki H, Akashi K (2007) Hematopoietic developmental pathways: on cellular basis. Oncogene 26:6687–6696

    Article  CAS  PubMed  Google Scholar 

  44. Holmes C, Stanford WL (2007) Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25:1339–1347

    Article  CAS  PubMed  Google Scholar 

  45. Parekh C, Crooks GM (2013) Critical differences in hematopoiesis and lymphoid development between humans and mice. J Clin Immunol 33(4):711–715. https://doi.org/10.1007/s10875-012-9844-3

    Article  CAS  PubMed  Google Scholar 

  46. Narayan AD, Chase JL, Lewis RL (2006) Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood 107:2180–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182

    Article  CAS  PubMed  Google Scholar 

  48. Fujiwara S (2018) Humanized mice: a brief overview on their diverse applications in biomedical research. J Cell Physiol 233(4):2889–2901. https://doi.org/10.1002/jcp.26022

    Article  CAS  PubMed  Google Scholar 

  49. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H, Yasukawa M, Ishikawa F (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A 107(29):13022–13027. https://doi.org/10.1073/pnas.1000475107

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    Article  CAS  PubMed  Google Scholar 

  51. de Pater E, Trompouki E (2018) Bloody zebrafish: novel methods in normal and malignant hematopoiesis. Front Cell Dev Biol 6:124. https://doi.org/10.3389/fcell.2018.00124

    Article  PubMed  PubMed Central  Google Scholar 

  52. Frame JM, Lim SE, North TE (2017) Hematopoietic stem cell development: using the zebrafish to identify extrinsic and intrinsic mechanisms regulating hematopoiesis. Methods Cell Biol 138:165–192. https://doi.org/10.1016/bs.mcb.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  53. Molyneaux K, Wylie C (2004) Primordial germ cell migration. Int J Dev Biol 48(5–6):537–544

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi K, de Sousa Lopes SM, Surani MA (2007) Germ cell specification in mice. Science 316(5823):394–396

    Article  CAS  PubMed  Google Scholar 

  55. Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436(7048):207–213

    Article  CAS  PubMed  Google Scholar 

  56. Scaldaferri ML, Klinger FG, Farini D, Di Carlo A, Carsetti R, Giorda E, De Felici M (2015) Hematopoietic activity in putative mouse primordial germ cell populations. Mech Dev 136:53–63. https://doi.org/10.1016/j.mod.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  57. Ratajczak MZ, Kucia M, Ratajczak J, Zuba-Surma EK (2009) A multi-instrumental approach to identify and purify very small embryonic like stem cells (VSELs) from adult tissues. Micron 40(3):386–393. https://doi.org/10.1016/j.micron.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  58. Nakatsuka R, Iwaki R, Matsuoka Y, Sumide K, Kawamura H, Fujioka T, Sasaki Y, Uemura Y, Asano H, Kwon AH, Sonoda Y (2016) Identification and characterization of lineage(−)CD45(−)Sca-1(+) VSEL phenotypic cells residing in adult mouse bone tissue. Stem Cells Dev 25(1):27–42. https://doi.org/10.1089/scd.2015.0168

    Article  CAS  PubMed  Google Scholar 

  59. Ratajczak MZ, Zuba-Surma EK, Machalinski B, Ratajczak J, Kucia M (2008) Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biological significance. Stem Cell Rev 4(2):89–99. https://doi.org/10.1007/s12015-008-9018-0

    Article  PubMed  Google Scholar 

  60. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21(2):297–303

    Article  CAS  PubMed  Google Scholar 

  61. Mierzejewska K, Borkowska S, Suszynska E, Suszynska M, Poniewierska-Baran A, Maj M, Pedziwiatr D, Adamiak M, Abdel-Latif A, Kakar SS, Ratajczak J, Kucia M, Ratajczak MZ (2015) Hematopoietic stem/progenitor cells express several functional sex hormone receptors-novel evidence for a potential developmental link between hematopoiesis and primordial germ cells. Stem Cells Dev 24(8):927–937. https://doi.org/10.1089/scd.2014.0546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abdelbaset-Ismail A, Suszynska M, Borkowska S, Adamiak M, Ratajczak J, Kucia M, Ratajczak MZ (2016) Human haematopoietic stem/progenitor cells express several functional sex hormone receptors. J Cell Mol Med 20(1):134–146. https://doi.org/10.1111/jcmm.12712

    Article  CAS  PubMed  Google Scholar 

  63. Koushik SV, Wang J, Rogers R, Moskophidis D, Lambert NA, Creazzo TL, Conway SJ (2001) Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J 15(7):1209–1211

    Article  CAS  PubMed  Google Scholar 

  64. North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM, Weber GJ, Harris J, Cutting CC, Huang P, Dzierzak E, Zon LI (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137(4):736–748. https://doi.org/10.1016/j.cell.2009.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ratajczak MZ (2014) A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 29(4):776–782. https://doi.org/10.1038/leu.2014.346

    Article  PubMed  Google Scholar 

  66. Shirazi R, Zarnani AH, Soleimani M, Abdolvahabi MA, Nayernia K, Ragerdi Kashani I (2012) BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells. Cell Biol Int 36(12):1185–1193. https://doi.org/10.1042/CBI20110651

    Article  CAS  PubMed  Google Scholar 

  67. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122(2):303–315

    Article  CAS  PubMed  Google Scholar 

  68. Selesniemi K, Lee HJ, Niikura T, Tilly JL (2008) Young adult donor bone marrow infusions into female mice postpone age-related reproductive failure and improve offspring survival. Aging (Albany NY) 1(1):49–57

    Article  Google Scholar 

  69. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W (2006) Derivation of male germ cells from bone marrow stem cells. Lab Investig 86(7):654–663

    Article  CAS  PubMed  Google Scholar 

  70. Liu C, Chen Z, Chen Z, Zhang T, Lu Y (2006) Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 8(9):716–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yoshimoto M, Heike T, Chang H, Kanatsu-Shinohara M, Baba S, Varnau JT, Shinohara T, Yoder MC, Nakahata T (2009) Bone marrow engraftment but limited expansion of hematopoietic cells from multipotent germline stem cells derived from neonatal mouse testis. Exp Hematol 37(12):1400–1410. https://doi.org/10.1016/j.exphem.2009.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Abdelbaset-Ismail A, Pedziwiatr D, Suszyńska E, Sluczanowska-Glabowska S, Schneider G, Kakar SS, Ratajczak MZ (2016) Vitamin D3 stimulates embryonic stem cells but inhibits migration and growth of ovarian cancer and teratocarcinoma cell lines. J Ovarian Res 18(9):26. https://doi.org/10.1186/s13048-016-0235-x

    Article  CAS  Google Scholar 

  73. Miwa Y, Atsumi T, Imai N, Ikawa Y (1991) Primitive erythropoiesis of mouse teratocarcinoma stem cells PCC3/A/1 in serum-free medium. Development 111(2):543–549

    CAS  PubMed  Google Scholar 

  74. Solter D (2006) From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 7(4):319–327. https://doi.org/10.1038/nrg1827

    Article  CAS  PubMed  Google Scholar 

  75. Vinnitsky V (2014) The development of a malignant tumor is due to a desperate asexual self-cloning process in which cancer stem cells develop the ability to mimic the genetic program of germline cells. Intrinsically Disord Proteins 2(1):e29997. https://doi.org/10.4161/idp.29997

    Article  PubMed  PubMed Central  Google Scholar 

  76. Leonard JT, Raess PW, Dunlap J, Hayes-Lattin B, Tyner JW, Traer E (2016) Functional and genetic screening of acute myeloid leukemia associated with mediastinal germ cell tumor identifies MEK inhibitor as an active clinical agent. J Hematol Oncol 31(9):31. https://doi.org/10.1186/s13045-016-0258-1

    Article  CAS  Google Scholar 

  77. Virant-Klun I (2018) Functional testing of primitive oocyte-like cells developed in ovarian surface epithelium cell culture from small VSEL-like stem cells: can they be fertilized one day? Stem Cell Rev 14(5):715–721. https://doi.org/10.1007/s12015-018-9832-y

    Article  CAS  Google Scholar 

  78. Challen GA, Boles N, Lin KK, Goodell MA (2009) Mouse hematopoietic stem cell identification and analysis. Cytometry A 75(1):14–24. https://doi.org/10.1002/cyto.a.20674

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kozuka T, Ishimaru F, Fujii K, Masuda K, Kaneda K, Imai T, Fujii N, Ishikura H, Hongo S, Watanabe T, Shinagawa K, Ikeda K, Niiya K, Harada M, Tanimoto M (2003) Plasma stromal cell-derived factor-1 during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Bone Marrow Transplant 31(8):651–654

    Article  CAS  PubMed  Google Scholar 

  80. Hattori K, Heissig B, Rafii S (2003) The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk Lymphoma 44(4):575–582

    Article  CAS  PubMed  Google Scholar 

  81. Juarez JG, Harun N, Thien M, Welschinger R, Baraz R, Pena AD, Pitson SM, Rettig M, DiPersio JF, Bradstock KF, Bendall LJ (2012) Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 119(3):707–716. https://doi.org/10.1182/blood-2011-04-348904

    Article  CAS  PubMed  Google Scholar 

  82. Borkowska S, Suszynska M, Mierzejewska K, Ismail A, Budkowska M, Salata D, Dolegowska B, Kucia M, Ratajczak J, Ratajczak MZ (2014) Novel evidence that crosstalk between the complement, coagulation and fibrinolysis proteolytic cascades is involved in mobilization of hematopoietic stem/progenitor cells (HSPCs). Leukemia 28(11):2148–2154. https://doi.org/10.1038/leu.2014.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim C, Schneider G, Abdel-Latif A, Mierzejewska K, Sunkara M, Borkowska S, Ratajczak J, Morris AJ, Kucia M, Ratajczak MZ (2013) Ceramide-1-phosphate regulates migration of multipotent stromal cells and endothelial progenitor cells--implications for tissue regeneration. Stem Cells 31(3):500–510. https://doi.org/10.1002/stem.1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ratajczak MZ, Suszynska M, Borkowska S, Ratajczak J, Schneider G (2014) The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opin Ther Targets 18(1):95–107. https://doi.org/10.1517/14728222.2014.851671

    Article  CAS  PubMed  Google Scholar 

  85. Rossi L, Manfredini R, Bertolini F, Ferrari D, Fogli M, Zini R (2007) The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood 109:533–542

    Article  CAS  PubMed  Google Scholar 

  86. Ratajczak MZ, Suszynska M (2016) Emerging strategies to enhance homing and engraftment of hematopoietic stem cells. Stem Cell Rev 12(1):121–128. https://doi.org/10.1007/s12015-015-9625-5

    Article  CAS  Google Scholar 

  87. Zou YR, Kottmann AH, Kuroda M (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  CAS  PubMed  Google Scholar 

  88. Tachibana K, Hirota S, Iizasa H (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594

    Article  CAS  PubMed  Google Scholar 

  89. Lévesque JP, Helwani FM, Winkler IG (2010) The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 24(12):1979–1992. https://doi.org/10.1038/leu.2010.214

    Article  PubMed  Google Scholar 

  90. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994–1008. https://doi.org/10.1016/j.cell.2007.09.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shin DM, Liu R, Klich I, Ratajczak J, Kucia M, Ratajczak MZ (2010) Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (VSELs). Mol Cells 29(6):533–538. https://doi.org/10.1007/s10059-010-0081-4

    Article  CAS  PubMed  Google Scholar 

  92. Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC, Ratajczak MZ (2011) Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol 39(2):225–237. https://doi.org/10.1016/j.exphem.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  93. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE (1992) Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255(5048):1137–1141

    Article  CAS  PubMed  Google Scholar 

  94. Mollah ZU, Aiba S, Nakagawa S, Mizuashi M, Ohtani T, Yoshino Y, Tagami H (2003) Interleukin-3 in cooperation with transforming growth factor beta induces granulocyte macrophage colony stimulating factor independent differentiation of human CD34+ hematopoietic progenitor cells into dendritic cells with features of Langerhans cells. J Invest Dermatol 121(6):1397–1401

    Article  CAS  PubMed  Google Scholar 

  95. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. https://doi.org/10.1038/nature12984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502(7473):637–643. https://doi.org/10.1038/nature12612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111:187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. de Lucas B, Pérez LM, Gálvez BG (2018) Importance and regulation of adult stem cell migration. J Cell Mol Med 22(2):746–754. https://doi.org/10.1111/jcmm.13422

    Article  PubMed  Google Scholar 

  99. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ, Kucia M, Janowska-Wieczorek A, Ratajczak J (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24(5):976–985. https://doi.org/10.1038/leu.2010.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lévesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ (2002) Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 30(5):440–449

    Article  PubMed  Google Scholar 

  101. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24(5):1254–1264

    Article  CAS  PubMed  Google Scholar 

  102. Shirvaikar N, Marquez-Curtis LA, Janowska-Wieczorek A (2012) Hematopoietic stem cell mobilization and homing after transplantation: the role of MMP-2, MMP-9, and MT1-MMP. Biochem Res Int 2012:685267. https://doi.org/10.1155/2012/685267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu L, Papa EF, Dooner MS, Machan JT, Johnson KW, Goldberg LR, Quesenberry PJ, Colvin GA (2012) Homing and long-term engraftment of long- and short-term renewal hematopoietic stem cells. PLoS One 7(2):e31300. https://doi.org/10.1371/journal.pone.0031300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ratajczak MZ (2008) Phenotypic and functional characterization of hematopoietic stem cells. Curr Opin Hematol 15(4):293–300. https://doi.org/10.1097/MOH.0b013e328302c7ca

    Article  PubMed  Google Scholar 

  105. Bertoncello I, Williams B (2004) Hematopoietic stem cell characterization by Hoechst33342 and rhodamine 123 staining. Methods Mol Biol 263:181–200

    CAS  PubMed  Google Scholar 

  106. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  PubMed  Google Scholar 

  107. Weksberg DC, Chambers SM, Boles NC, Goodell MA (2008) CD150- side population cells represent a functionally distinct population of long-term hematopoietic stem cells. Blood 111:2444–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13(1):102–116. https://doi.org/10.1016/j.stem.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gangenahalli GU, Singh VK, Verma YK (2006) Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells Dev 15:305–313

    Article  CAS  PubMed  Google Scholar 

  110. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J (2006) The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20:1915–1924

    Article  CAS  PubMed  Google Scholar 

  111. Ng YY, Baert MR, de Haas EF, Pike-Overzet K, Staal FJ (2009) Isolation of human and mouse hematopoietic stem cells. Methods Mol Biol 506:13–21. https://doi.org/10.1007/978-1-59745-409-4_2

    Article  CAS  PubMed  Google Scholar 

  112. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98:14541–14546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hess DA, Wirthlin L, Craft TP (2006) Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 107:2162–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ratajczak MZ, Pletcher CH, Marlicz W (1998) CD34+, kit+, rhodamine123(low) phenotype identifies a marrow cell population highly enriched for human hematopoietic stem cells. Leukemia 12:942–950

    Article  CAS  PubMed  Google Scholar 

  115. Wognum AW, Eaves AC, Thomas TE (2003) Identification and isolation of hematopoietic stem cells. Arch Med Res 34(6):461–475

    Article  CAS  PubMed  Google Scholar 

  116. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62

    Article  CAS  PubMed  Google Scholar 

  117. North TE, de Bruijn MF, Stacy T (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672

    Article  CAS  PubMed  Google Scholar 

  118. Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–673

    Article  CAS  PubMed  Google Scholar 

  119. Hemmati S, Sinclair T, Tong M, Bartholdy B, Okabe RO, Ames K, Ostrodka L, Haque T, Kaur I, Mills TS, Agarwal A, Pietras EM, Zhao JJ, Roberts TM, Gritsman K (2019) PI3 kinase alpha and delta promote hematopoietic stem cell activation. JCI Insight 5. pii: 125832. https://doi.org/10.1172/jci.insight.125832

  120. Koestenbauer S, Zisch A, Dohr G, Zech NH (2009) Protocols for hematopoietic stem cell expansion from umbilical cord blood. Cell Transplant 18(10):1059–1068. https://doi.org/10.3727/096368909X471288

    Article  PubMed  Google Scholar 

  121. Ko KH, Nordon R, O’Brien TA, Symonds G, Dolnikov A (2017) Ex vivo expansion of hematopoietic stem cells to improve engraftment in stem cell transplantation. Methods Mol Biol 1524:301–311

    Article  CAS  PubMed  Google Scholar 

  122. Hutton JF, D’Andrea RJ, Lewis ID (2007) Potential for clinical ex vivo expansion of cord blood haemopoietic stem cells using non-haemopoietic factor supplements. Curr Stem Cell Res Ther 2(3):229–237

    Article  CAS  PubMed  Google Scholar 

  123. Papa L, Djedaini M, Hoffman R (2019) Ex vivo expansion of hematopoietic stem cells from human umbilical cord blood-derived CD34+ cells using valproic acid. J Vis Exp (146). https://doi.org/10.3791/59532

  124. Hoggatt J, Singh P, Sampath J, Pelus LM (2009) Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113(22):5444–5455. https://doi.org/10.1182/blood-2009-01-201335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Angelos MG, Ruh PN, Webber BR, Blum RH, Ryan CD, Bendzick L, Shim S, Yingst AM, Tufa DM, Verneris MR, Kaufman DS (2017) Aryl hydrocarbon receptor inhibition promotes hematolymphoid development from human pluripotent stem cells. Blood 129(26):3428–3439. https://doi.org/10.1182/blood-2016-07-730440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C, Chute JP, Morris A, McDonald C, Waters-Pick B, Stiff P, Wease S, Peled A, Snyder D, Cohen EG, Shoham H, Landau E, Friend E, Peleg I, Aschengrau D, Yackoubov D, Kurtzberg J, Peled T (2014) Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest 124(7):3121–3128. https://doi.org/10.1172/JCI74556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Young JC, Wu S, Hansteen G, Du C, Sambucetti L, Remiszewski S, O’Farrell AM, Hill B, Lavau C, Murray LJ (2004) Inhibitors of histone deacetylases promote hematopoietic stem cell self-renewal. Cytotherapy 6(4):328–336

    Article  CAS  PubMed  Google Scholar 

  128. Elizalde C, Fernández-Rueda J, Salcedo JM, Dorronsoro A, Ferrin I, Jakobsson E, Trigueros C (2012) Histone deacetylase 3 modulates the expansion of human hematopoietic stem cells. Stem Cells Dev 21(14):2581–2591. https://doi.org/10.1089/scd.2011.0698

    Article  CAS  PubMed  Google Scholar 

  129. Zhang Y, Gao Y (2016) Novel chemical attempts at ex vivo hematopoietic stem cell expansion. Int J Hematol 103(5):519–529. https://doi.org/10.1007/s12185-016-1962-x

    Article  CAS  PubMed  Google Scholar 

  130. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432:625–630

    Article  CAS  PubMed  Google Scholar 

  131. Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126(22):5073–5084

    CAS  PubMed  Google Scholar 

  132. Metcalf D, Ng AP, Loughran SJ, Phipson B, Smyth GK, Di Rago L, Mifsud S (2009) Murine hematopoietic blast colony-forming cells and their progeny have distinctive membrane marker profiles. Proc Natl Acad Sci U S A 106(45):19102–19107. https://doi.org/10.1073/pnas.0910354106

    Article  PubMed  PubMed Central  Google Scholar 

  133. Metcalf D, Ng A, Mifsud S, Di Rago L (2010) Multipotential hematopoietic blast colony-forming cells exhibit delays in self-generation and lineage commitment. Proc Natl Acad Sci U S A 107(37):16257–16261. https://doi.org/10.1073/pnas.1011881107

    Article  PubMed  PubMed Central  Google Scholar 

  134. Grinenko T, Arndt K, Portz M, Mende N, Günther M, Cosgun KN, Alexopoulou D, Lakshmanaperumal N, Henry I, Dahl A, Waskow C (2014) Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells. J Exp Med 211(2):209–215. https://doi.org/10.1084/jem.20131115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yan XQ, Chen Y, Hartley C, McElroy P, Fletcher F, McNiece IK (1998) Marrow repopulating cells in mobilized PBPC can be serially transplanted for up to five generations or be remobilized in PBPC reconstituted mice. Bone Marrow Transplant 21(10):975–981

    Article  CAS  PubMed  Google Scholar 

  136. Szilvassy SJ, Meyerrose TE, Ragland PL, Grimes B (2001) Differential homing and engraftment properties of hematopoietic progenitor cells from murine bone marrow, mobilized peripheral blood, and fetal liver. Blood 98(7):2108–2115

    Article  CAS  PubMed  Google Scholar 

  137. Durand EM, Zon LI (2010) Newly emerging roles for prostaglandin E2 regulation of hematopoiesis and hematopoietic stem cell engraftment. Curr Opin Hematol 17(4):308–312. https://doi.org/10.1097/MOH.0b013e32833a888c

    Article  CAS  PubMed  Google Scholar 

  138. Fernández-García M, Yañez RM, Sánchez-Domínguez R, Hernando-Rodriguez M, Peces-Barba M, Herrera G, O’Connor JE, Segovia JC, Bueren JA, Lamana ML (2015) Mesenchymal stromal cells enhance the engraftment of hematopoietic stem cells in an autologous mouse transplantation model. Stem Cell Res Ther 6:165. https://doi.org/10.1186/s13287-015-0155-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lapidot T, Kollet O (2010) The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology Am Soc Hematol Educ Program 2010:1–6. https://doi.org/10.1182/asheducation-2010.1.1

    Article  PubMed  Google Scholar 

  140. Grassinger J, Nilsson SK (2011) Methods to analyze the homing efficiency and spatial distribution of hematopoietic stem and progenitor cells and their relationship to the bone marrow endosteum and vascular endothelium. Methods Mol Biol 750:197–214. https://doi.org/10.1007/978-1-61779-145-1_14

    Article  CAS  PubMed  Google Scholar 

  141. Caselli A, Olson TS, Otsuru S, Chen X, Hofmann TJ, Nah HD, Grisendi G, Paolucci P, Dominici M, Horwitz EM (2013) IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells 31(10):2193–2204. https://doi.org/10.1002/stem.1463

    Article  CAS  PubMed  Google Scholar 

  142. Matsuoka S, Tsuji K, Hisakawa H (2001) Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells. Blood 98:6–12

    Article  CAS  PubMed  Google Scholar 

  143. Nakano T, Kodama H, Honjo T (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265:1098–1101

    Article  CAS  PubMed  Google Scholar 

  144. Umeda K, Heike T, Yoshimoto M (2006) Identification and characterization of hemoangiogenic progenitors during cynomolgus monkey embryonic stem cell differentiation. Stem Cells 24:1348–1358

    Article  CAS  PubMed  Google Scholar 

  145. Traggiai E, Chicha L, Mazzucchelli L (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107

    Article  CAS  PubMed  Google Scholar 

  146. Tournoy KG, Depraetere S, Meuleman P (1998) Murine IL-2 receptor beta chain blockade improves human leukocyte engraftment in SCID mice. Eur J Immunol 28:3221–3230

    Article  CAS  PubMed  Google Scholar 

  147. Kimura T, Asada R, Wang J (2007) Identification of long-term repopulating potential of human cord blood-derived CD34-flt3- severe combined immunodeficiency-repopulating cells by intra-bone marrow injection. Stem Cells 25:1348–1355

    Article  CAS  PubMed  Google Scholar 

  148. Sonoda Y (2008) Immunophenotype and functional characteristics of human primitive CD34-negative hematopoietic stem cells: the significance of the intra-bone marrow injection. J Autoimmun 30:136–144. https://doi.org/10.1016/j.jaut.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  149. Wang J, Kimura T, Asada R (2003) SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood 101:2924–2931

    Article  CAS  PubMed  Google Scholar 

  150. Castello S, Podesta M, Menditto VG (2004) Intra-bone marrow injection of bone marrow and cord blood cells: an alternative way of transplantation associated with a higher seeding efficiency. Exp Hematol 32:782–787

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Z. Ratajczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bujko, K., Kucia, M., Ratajczak, J., Ratajczak, M.Z. (2019). Hematopoietic Stem and Progenitor Cells (HSPCs). In: Ratajczak, M. (eds) Stem Cells. Advances in Experimental Medicine and Biology, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-31206-0_3

Download citation

Publish with us

Policies and ethics