Skip to main content

Stem Cells in Lungs

  • Chapter
  • First Online:
Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1201))

Abstract

The respiratory system plays an essential role for human life. This system (like all others) undergoes physiological regeneration due to many types of stem cells found both in the respiratory tract itself and in the alveoli. The stem cell hierarchy is very extensive due to their variety in the lungs and is still not completely understood.

The best described lung stem cells are alveolar type II cells, which as progenitor lung stem cells are precursors of alveolar type I cells, i.e., cells that perform gas exchange in the lungs. These progenitor stem cells, which reside in alveoli corners, express high levels of surfactant protein C (SFTPC). Despite the fact that type II pneumocytes occupy only 7–10% of the lung surface, there are almost twice as many as alveolar type I cells occupying almost 95% of the surface.

Other stem cells making up the lung regenerative potential have also been identified in the lungs. Both endothelial, mesodermal, and epithelial stem cells are necessary for the lungs to function properly and perform their physiological functions.

The lungs, like all other organs, undergo an aging process. As a result of this process, not only the total number of cells changes, the percentage of particular types of cells, but also their efficiency is reduced. With age, the proliferative potential of lung stem cells also decreases, not just their number. This brings about the need to increase the intensity of research in the field of regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dye BR, Miller AJ, Spence JR (2016) How to grow a lung: applying principles of developmental biology to generate lung lineages from human pluripotent stem cells. Curr Pathobiol Rep 4:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee JH, Rawlins EL (2018) Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev Biol 433(2):166–176

    Article  CAS  PubMed  Google Scholar 

  3. Logan CY, Desai TJ (2015) Keeping it together: pulmonary alveoli are maintained by a hierarchy of cellular programs. BioEssays 37(9):1028–1037

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bertalanffy FD, Leblond CP (1955) Structure of respiratory tissue. Lancet 269(6905):1365–1368

    Article  CAS  PubMed  Google Scholar 

  5. McQualter JL et al (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A 107(4):1414–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stevenson K, McGlynn L, Shiels PG (2009) Stem cells: outstanding potential and outstanding questions. Scott Med J 54(4):35–37

    Article  CAS  PubMed  Google Scholar 

  7. Ratajczak MZ (2015) A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 29(4):776–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chung MI et al (2018) Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. Development 145(9):dev163014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Dye BR et al (2016) A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. elife 5

    Google Scholar 

  10. Yang H et al (2017) Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell 169(3):483–496 e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Granton E et al (2018) The lung microvasculature is a functional immune niche. Trends Immunol 39(11):890–899

    Article  CAS  PubMed  Google Scholar 

  12. Yipp BG et al (2017) The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Sci Immunol 2(10)

    Google Scholar 

  13. Tammela T et al (2017) A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545(7654):355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maru Y (2015) The lung metastatic niche. J Mol Med (Berl) 93(11):1185–1192

    Article  CAS  Google Scholar 

  15. Schiller HB et al (2015) Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol 11(7):819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hegab AE et al (2015) Mimicking the niche of lung epithelial stem cells and characterization of several effectors of their in vitro behavior. Stem Cell Res 15(1):109–121

    Article  CAS  PubMed  Google Scholar 

  17. Zhang WG et al (2014) Regulation of transplanted mesenchymal stem cells by the lung progenitor niche in rats with chronic obstructive pulmonary disease. Respir Res 15:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Banerjee ER (2014) Looking for the elusive lung stem cell niche. Transl Respir Med 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Andersson-Sjoland A et al (2011) Fibrocytes and the tissue niche in lung repair. Respir Res 12:76

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alvarez DF et al (2008) Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 294(3):L419–L430

    Article  CAS  PubMed  Google Scholar 

  21. McQualter JL, Bertoncello I (2012) Concise review: deconstructing the lung to reveal its regenerative potential. Stem Cells 30(5):811–816

    Article  CAS  PubMed  Google Scholar 

  22. Wu X et al (2018) Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126. Exp Cell Res 370(1):13–23

    Article  CAS  PubMed  Google Scholar 

  23. Gao W et al (2019) Endothelial progenitor cells attenuate the lung ischemia/reperfusion injury following lung transplantation via the endothelial nitric oxide synthase pathway. J Thorac Cardiovasc Surg 157(2):803–814

    Article  CAS  PubMed  Google Scholar 

  24. Jin Y et al (2018) Transplantation of endothelial progenitor cells attenuated paraquat-induced acute lung injury via miR-141-3p-Notch-Nrf2 axis. Cell Biosci 8:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Shi Z et al (2017) Intratracheal transplantation of endothelial progenitor cells attenuates smoking-induced COPD in mice. Int J Chron Obstruct Pulmon Dis 12:947–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barkauskas CE et al (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123(7):3025–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wood JP, Kolassa JE, McBride JT (1998) Changes in alveolar septal border lengths with postnatal lung growth. Am J Phys 275(6 Pt 1):L1157–L1163

    CAS  Google Scholar 

  28. Liu Y et al (2015) Activation of type II cells into regenerative stem cell antigen-1(+) cells during alveolar repair. Am J Respir Cell Mol Biol 53(1):113–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Evans MJ et al (1973) Renewal of alveolar epithelium in rat following exposure to No2. Am J Pathol 70(2):175–198

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Evans MJ et al (1975) Transformation of alveolar type-2 cells to type-1 cells following exposure to No2. Exp Mol Pathol 22(1):142–150

    Article  CAS  PubMed  Google Scholar 

  31. Rock JR et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108(52):E1475–E1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rock JR, Hogan BL (2011) Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 27:493–512

    Article  CAS  PubMed  Google Scholar 

  33. Crapo JD et al (1983) Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis 128(2 Pt 2):S42–S46

    CAS  PubMed  Google Scholar 

  34. Jin H et al (2018) Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair. Am J Physiol Lung Cell Mol Physiol 314(5):L882–L892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jobe AH, Ikegami M (2000) Lung development and function in preterm infants in the surfactant treatment era. Annu Rev Physiol 62:825–846

    Article  CAS  PubMed  Google Scholar 

  36. Kuehn A et al (2016) Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. ALTEX 33(3):251–260

    PubMed  Google Scholar 

  37. Crandall ED, Matthay MA (2001) Alveolar epithelial transport. Basic science to clinical medicine. Am J Respir Crit Care Med 163(4):1021–1029

    Article  CAS  PubMed  Google Scholar 

  38. Endter S et al (2009) RT-PCR analysis of ABC, SLC and SLCO drug transporters in human lung epithelial cell models. J Pharm Pharmacol 61(5):583–591

    Article  CAS  PubMed  Google Scholar 

  39. Kasper M, Barth K (2017) Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep 37(6):BSR20171301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson MD et al (2002) Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. Proc Natl Acad Sci U S A 99(4):1966–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hollenhorst MI, Richter K, Fronius M (2011) Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011:174306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schlingmann B, Molina SA, Koval M (2015) Claudins: gatekeepers of lung epithelial function. Semin Cell Dev Biol 42:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hiemstra PS, McCray PB Jr, Bals R (2015) The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J 45(4):1150–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim CF et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835

    Article  CAS  PubMed  Google Scholar 

  45. Giangreco A et al (2004) Molecular phenotype of airway side population cells. Am J Physiol Lung Cell Mol Physiol 286(4):L624–L630

    Article  CAS  PubMed  Google Scholar 

  46. Hong KU et al (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24(6):671–681

    Article  CAS  PubMed  Google Scholar 

  47. Volckaert T et al (2011) Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest 121(11):4409–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giangreco A et al (2009) Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci U S A 106(23):9286–9291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161(1):173–182

    Article  PubMed  PubMed Central  Google Scholar 

  50. Reynolds SD et al (2000) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156(1):269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guha A et al (2017) Uroplakin 3a(+) cells are a distinctive population of epithelial progenitors that contribute to airway maintenance and post-injury repair. Cell Rep 19(2):246–254

    Article  CAS  PubMed  Google Scholar 

  52. Guha A et al (2014) Analysis of Notch signaling-dependent gene expression in developing airways reveals diversity of Clara cells. PLoS One 9(2):e88848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Krause DS (2008) Bone marrow-derived cells and stem cells in lung repair. Proc Am Thorac Soc 5(3):323–327

    Article  PubMed  PubMed Central  Google Scholar 

  54. Martin J et al (2008) Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy 10(2):140–151

    Article  CAS  PubMed  Google Scholar 

  55. Reynolds SD et al (2007) Molecular and functional properties of lung SP cells. Am J Physiol Lung Cell Mol Physiol 292(4):L972–L983

    Article  CAS  PubMed  Google Scholar 

  56. McQualter JL et al (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells 27(3):623–633

    Article  CAS  PubMed  Google Scholar 

  57. Smith E, Cochrane WJ (1946) Cystic organoid teratoma; report of a case. Can Med Assoc J 55(2):1

    Google Scholar 

  58. Lou YR, Leung AW (2018) Next generation organoids for biomedical research and applications. Biotechnol Adv 36(1):132–149

    Article  CAS  PubMed  Google Scholar 

  59. Hogan BL et al (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15(2):123–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takeda T et al (1981) A new murine model of accelerated senescence. Mech Ageing Dev 17(2):183–194

    Article  CAS  PubMed  Google Scholar 

  61. Hosokawa M et al (1984) Cataract and other ophthalmic lesions in senescence accelerated mouse (SAM). Morphology and incidence of senescence associated ophthalmic changes in mice. Exp Eye Res 38(2):105–114

    Article  CAS  PubMed  Google Scholar 

  62. Takeshita S et al (1982) Spontaneous age-associated amyloidosis in senescence-accelerated mouse (SAM). Mech Ageing Dev 20(1):13–23

    Article  CAS  PubMed  Google Scholar 

  63. Matsushita M et al (1986) Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am J Pathol 125(2):276–283

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kurozumi M et al (1994) Age-related changes in lung structure and function in the senescence-accelerated mouse (SAM): SAM-P/1 as a new murine model of senile hyperinflation of lung. Am J Respir Crit Care Med 149(3 Pt 1):776–782

    Article  CAS  PubMed  Google Scholar 

  65. Uejima Y et al (1991) A new murine model of aging lung: the senescence accelerated mouse (SAM)-P. Mech Ageing Dev 61(3):223–236

    Article  CAS  PubMed  Google Scholar 

  66. Kawakami M, Paul JL, Thurlbeck WM (1984) The effect of age on lung structure in male BALB/cNNia inbred mice. Am J Anat 170(1):1–21

    Article  CAS  PubMed  Google Scholar 

  67. Huang K et al (2007) Age-dependent changes of airway and lung parenchyma in C57BL/6J mice. J Appl Physiol (1985) 102(1):200–206

    Article  Google Scholar 

  68. Sueblinvong V et al (2012) Predisposition for disrepair in the aged lung. Am J Med Sci 344(1):41–51

    Article  PubMed  PubMed Central  Google Scholar 

  69. Higashimoto Y et al (1993) The effects of aging on the function of alveolar macrophages in mice. Mech Ageing Dev 69(3):207–217

    Article  CAS  PubMed  Google Scholar 

  70. Aoshiba K, Nagai A (2007) Chronic lung inflammation in aging mice. FEBS Lett 581(18):3512–3516

    Article  CAS  PubMed  Google Scholar 

  71. Chen TS, Richie JP Jr, Lang CA (1990) Life span profiles of glutathione and acetaminophen detoxification. Drug Metab Dispos 18(6):882–887

    CAS  PubMed  Google Scholar 

  72. Pinkerton KE et al (1982) Morphologic changes in the lung during the lifespan of Fischer 344 rats. Am J Anat 164(2):155–174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Ciechanowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciechanowicz, A. (2019). Stem Cells in Lungs. In: Ratajczak, M. (eds) Stem Cells. Advances in Experimental Medicine and Biology, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-31206-0_13

Download citation

Publish with us

Policies and ethics