Skip to main content

Potential Clinical Applications of Stem Cells in Regenerative Medicine

  • Chapter
  • First Online:
Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1201))

Abstract

The field of regenerative medicine is looking for a pluripotent/multipotent stem cell able to differentiate across germ layers and be safely employed in therapy. Unfortunately, with the exception of hematopoietic stem/progenitor cells (HSPCs) for hematological applications, the current clinical results with stem cells are somewhat disappointing. The potential clinical applications of the more primitive embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have so far been discouraging, as both have exhibited several problems, including genomic instability, a risk of teratoma formation, and the possibility of rejection. Therefore, the only safe stem cells that have so far been employed in regenerative medicine are monopotent stem cells, such as the abovementioned HSPCs or mesenchymal stem cells (MSCs) isolated from postnatal tissues. However, their monopotency, and therefore limited differentiation potential, is a barrier to their broader application in the clinic. Interestingly, results have accumulated indicating that adult tissues contain rare, early-development stem cells known as very small embryonic-like stem cells (VSELs), which can differentiate into cells from more than one germ layer. This chapter addresses different sources of stem cells for potential clinical application and their advantages and problems to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratajczak MZ, Bujko K, Wojakowski W (2016) Stem cells and clinical practice: new advances and challenges at the time of emerging problems with induced pluripotent stem cell therapies. Pol Arch Med Wewn 126:879–890

    PubMed  Google Scholar 

  2. Mitalipov S, Wolf D (2009) Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol 114:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Condic ML (2014) Totipotency: what it is and what it is not. Stem Cells Dev 23:796–812

    Article  PubMed  Google Scholar 

  4. Tarkowski AK (1959) Experiments on the development of isolated blastomeres of mouse eggs. Nature 184:1286–1287

    Article  CAS  PubMed  Google Scholar 

  5. Ratajczak MZ, Zuba-Surma E, Kucia M et al (2012) Pluripotent and multipotent stem cells in adult tissues. Adv Med Sci 57:1–17

    Article  CAS  PubMed  Google Scholar 

  6. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  7. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  9. Ratajczak MZ (2008) Phenotypic and functional characterization of hematopoietic stem cells. Curr Opin Hematol 15:293–300

    Article  PubMed  Google Scholar 

  10. Ratajczak MZ, Ratajczak J, Suszynska M et al (2017) A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circ Res 120:166–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Visvader JE, Clevers H (2016) Tissue-specific designs of stem cell hierarchies. Nat Cell Biol 18:349–355

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kucia M, Reca R, Campbell FR et al (2006) A population of very small embryonic-like (vsel) cxcr4(+)ssea-1(+)oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  CAS  PubMed  Google Scholar 

  14. Sambasivan R, Tajbakhsh S (2007) Skeletal muscle stem cell birth and properties. Semin Cell Dev Biol 18:870–882

    Article  CAS  PubMed  Google Scholar 

  15. Zummo G, Bucchieri F, Cappello F et al (2007) Adult stem cells: the real root into the embryo? Eur J Histochem 51(Suppl 1):101–103

    PubMed  Google Scholar 

  16. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    Article  CAS  PubMed  Google Scholar 

  17. Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132:583–597

    Article  CAS  PubMed  Google Scholar 

  18. Kucia M, Shin DM, Liu R et al (2011) Reduced number of vsels in the bone marrow of growth hormone transgenic mice indicates that chronically elevated igf1 level accelerates age-dependent exhaustion of pluripotent stem cell pool: a novel view on aging. Leukemia 25:1370–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharples AP, Hughes DC, Deane CS et al (2015) Longevity and skeletal muscle mass: the role of igf signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 14:511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barbera M, di Pietro M, Walker E et al (2015) The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut 64:11–19

    Article  PubMed  Google Scholar 

  21. DeWard AD, Cramer J, Lagasse E (2014) Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep 9:701–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsu YC, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahla RS (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016:6940283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Steindler DA (2007) Stem cells, regenerative medicine, and animal models of disease. ILAR J 48:323–338

    Article  CAS  PubMed  Google Scholar 

  25. Wu LJ, Chen ZY, Wang Y et al (2019) Organoids of liver diseases: from bench to bedside. World J Gastroenterol 25:1913–1927

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Miguel MP, Prieto I, Moratilla A et al (2019) Mesenchymal stem cells for liver regeneration in liver failure: from experimental models to clinical trials. Stem Cells Int 2019:3945672

    Article  PubMed  PubMed Central  Google Scholar 

  27. Orlic D, Kajstura J, Chimenti S et al (2003) Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 7 Suppl 3:86–88

    Article  PubMed  Google Scholar 

  28. Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    Article  PubMed  Google Scholar 

  29. Lodi D, Iannitti T, Palmieri B (2011) Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 30:9

    Article  PubMed  PubMed Central  Google Scholar 

  30. D’Addio F, Valderrama Vasquez A, Ben Nasr M et al (2014) Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis. Diabetes 63:3041–3046

    Article  PubMed  Google Scholar 

  31. Radaelli M, Merlini A, Greco R et al (2014) Autologous bone marrow transplantation for the treatment of multiple sclerosis. Curr Neurol Neurosci Rep 14:478

    Article  PubMed  CAS  Google Scholar 

  32. Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 17:11–22

    Article  CAS  PubMed  Google Scholar 

  33. Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5:121–143

    Article  PubMed  Google Scholar 

  34. Ratajczak MZ, Ratajczak J (2017) Extracellular microvesicles as game changers in better understanding the complexity of cellular interactions-from bench to clinical applications. Am J Med Sci 354:449–452

    Article  PubMed  PubMed Central  Google Scholar 

  35. Silva TP, Cotovio JP, Bekman E et al (2019) Design principles for pluripotent stem cell-derived organoid engineering. Stem Cells Int 2019:4508470

    PubMed  PubMed Central  Google Scholar 

  36. Liu S, Zhou J, Zhang X et al (2016) Strategies to optimize adult stem cell therapy for tissue regeneration. Int J Mol Sci 17

    Article  PubMed Central  CAS  Google Scholar 

  37. Kuci S, Kuci Z, Latifi-Pupovci H et al (2009) Adult stem cells as an alternative source of multipotential (pluripotential) cells in regenerative medicine. Curr Stem Cell Res Ther 4:107–117

    Article  CAS  PubMed  Google Scholar 

  38. Holan V, Hermankova B, Bohacova P et al (2016) Distinct immunoregulatory mechanisms in mesenchymal stem cells: role of the cytokine environment. Stem Cell Rev 12:654–663

    Article  CAS  Google Scholar 

  39. Ratajczak MZ, Kucia M, Jadczyk T et al (2012) Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 26:1166–1173

    Article  CAS  PubMed  Google Scholar 

  40. Gatti S, Bruno S, Deregibus MC et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  CAS  PubMed  Google Scholar 

  41. Tapia N, Scholer HR (2016) Molecular obstacles to clinical translation of ipscs. Cell Stem Cell 19:298–309

    Article  CAS  PubMed  Google Scholar 

  42. Walia B, Satija N, Tripathi RP et al (2012) Induced pluripotent stem cells: fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Rev 8:100–115

    Article  CAS  Google Scholar 

  43. Garber K (2015) Riken suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol 33:890–891

    Article  CAS  PubMed  Google Scholar 

  44. Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30:204–213

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dresser R (2010) Stem cell research as innovation: expanding the ethical and policy conversation. J Law Med Ethics 38:332–341

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brown C (2012) Stem cell tourism poses risks. CMAJ 184:E121–E122

    Article  PubMed  PubMed Central  Google Scholar 

  47. Master Z, Resnik DB (2011) Stem-cell tourism and scientific responsibility. Stem-cell researchers are in a unique position to curb the problem of stem-cell tourism. EMBO Rep 12:992–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Paepe C, Krivega M, Cauffman G et al (2014) Totipotency and lineage segregation in the human embryo. Mol Hum Reprod 20:599–618

    Article  PubMed  Google Scholar 

  49. Morgani SM, Brickman JM (2014) The molecular underpinnings of totipotency. Philos Trans R Soc Lond Ser B Biol Sci 369:20130549

    Article  CAS  Google Scholar 

  50. Qin Y, Qin J, Zhou C et al (2015) Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer. Cell Cycle 14:1282–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tachibana M, Amato P, Sparman M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brons IG, Smithers LE, Trotter MW et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  CAS  PubMed  Google Scholar 

  53. Anversa P, Rota M, Urbanek K et al (2005) Myocardial aging – a stem cell problem. Basic Res Cardiol 100:482–493

    Article  CAS  PubMed  Google Scholar 

  54. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M et al (2008) Hunt for pluripotent stem cell – regenerative medicine search for almighty cell. J Autoimmun 30:151–162

    Article  PubMed  PubMed Central  Google Scholar 

  55. Beltrami AP, Cesselli D, Bergamin N et al (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 110:3438–3446

    Article  CAS  PubMed  Google Scholar 

  56. Kuroda Y, Wakao S, Kitada M et al (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (muse) cells. Nat Protoc 8:1391–1415

    Article  PubMed  CAS  Google Scholar 

  57. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  58. Jiang Y, Vaessen B, Lenvik T et al (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    Article  CAS  PubMed  Google Scholar 

  59. Kogler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    Article  PubMed  PubMed Central  Google Scholar 

  60. D’Ippolito G, Diabira S, Howard GA et al (2004) Marrow-isolated adult multilineage inducible (Miami) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  CAS  Google Scholar 

  61. Cesselli D, Beltrami AP, Rigo S et al (2009) Multipotent progenitor cells are present in human peripheral blood. Circ Res 104:1225–1234

    Article  CAS  PubMed  Google Scholar 

  62. Gordon MY (2008) Stem cells for regenerative medicine – biological attributes and clinical application. Exp Hematol 36:726–732

    Article  CAS  PubMed  Google Scholar 

  63. Vacanti MP, Roy A, Cortiella J et al (2001) Identification and initial characterization of spore-like cells in adult mammals. J Cell Biochem 80:455–460

    Article  CAS  PubMed  Google Scholar 

  64. Orlic D, Anderson S, Bodine DM (1994) Biological properties of subpopulations of pluripotent hematopoietic stem cells enriched by elutriation and flow cytometry. Blood Cells 20:107–117; discussion 118–120

    CAS  PubMed  Google Scholar 

  65. Jones RJ, Wagner JE, Celano P et al (1990) Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347:188–189

    Article  CAS  PubMed  Google Scholar 

  66. Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  CAS  PubMed  Google Scholar 

  67. Shaikh A, Anand S, Kapoor S et al (2017) Mouse bone marrow vsels exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Rev 13:202–216

    Article  CAS  Google Scholar 

  68. Shin DM, Liu R, Klich I et al (2010) Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (vsels). Mol Cells 29:533–538

    Article  CAS  PubMed  Google Scholar 

  69. Lahlil R, Scrofani M, Barbet R et al (2018) Vsels maintain their pluripotency and competence to differentiate after enhanced ex vivo expansion. Stem Cell Rev 14:510–524

    Article  CAS  PubMed Central  Google Scholar 

  70. Bhartiya D (2019) Clinical translation of stem cells for regenerative medicine. Circ Res 124:840–842

    Article  CAS  PubMed  Google Scholar 

  71. Ratajczak MZ, Ratajczak J, Kucia M (2019) Very small embryonic-like stem cells (vsels). Circ Res 124:208–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ratajczak MZ (2018) Mulhouse strategy to expand ex vivo very small embryonic like stem cells (vsels) – recent study published in stem cell reviews and reports. Stem Cell Rev 14:461–462

    Article  Google Scholar 

  73. Guerin CL, Loyer X, Vilar J et al (2015) Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thromb Haemost 113:1084–1094

    Article  PubMed  Google Scholar 

  74. Guerin CL, Rossi E, Saubamea B et al (2017) Human very small embryonic-like cells support vascular maturation and therapeutic revascularization induced by endothelial progenitor cells. Stem Cell Rev 13:552–560

    Article  CAS  Google Scholar 

  75. Ratajczak MZ, Shin DM, Liu R et al (2012) Very small embryonic/epiblast-like stem cells (vsels) and their potential role in aging and organ rejuvenation – an update and comparison to other primitive small stem cells isolated from adult tissues. Aging 4:235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shin DM, Zuba-Surma EK, Wu W et al (2009) Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived oct4(+) very small embryonic-like stem cells. Leukemia 23:2042–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen ZH, Lv X, Dai H et al (2015) Hepatic regenerative potential of mouse bone marrow very small embryonic-like stem cells. J Cell Physiol 230:1852–1861

    Article  CAS  PubMed  Google Scholar 

  78. Maj M, Schneider G, Ratajczak J et al (2015) The cell cycle- and insulin-signaling-inhibiting mirna expression pattern of very small embryonic-like stem cells contributes to their quiescent state. Exp Biol Med (Maywood) 240:1107–1111

    Article  CAS  Google Scholar 

  79. Ratajczak J, Zuba-Surma E, Paczkowska E et al (2011) Stem cells for neural regeneration--a potential application of very small embryonic-like stem cells. J Physiol Pharmacol 62:3–12

    CAS  PubMed  Google Scholar 

  80. Bhartiya D (2017) Shifting gears from embryonic to very small embryonic-like stem cells for regenerative medicine. Indian J Med Res 146:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bhartiya D (2017) Pluripotent stem cells in adult tissues: struggling to be acknowledged over two decades. Stem Cell Rev 13:713–724

    Article  CAS  Google Scholar 

  82. Kucia M, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a source of circulating cxcr4+ tissue-committed stem cells. Biol Cell 97:133–146

    Article  CAS  PubMed  Google Scholar 

  83. Chen C, Fingerhut JM, Yamashita YM (2016) The ins(ide) and outs(ide) of asymmetric stem cell division. Curr Opin Cell Biol 43:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Giebel B (2008) Cell polarity and asymmetric cell division within human hematopoietic stem and progenitor cells. Cells Tissues Organs 188:116–126

    Article  PubMed  Google Scholar 

  85. Li JJ, Hosseini-Beheshti E, Grau GE, et al (2019) Stem cell-derived extracellular vesicles for treating joint injury and osteoarthritis. Nano 9

    Article  CAS  PubMed Central  Google Scholar 

  86. Kim S, Kim TM (2019) Generation of mesenchymal stem-like cells for producing extracellular vesicles. World J Stem Cells 11:270–280

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cerletti M, Jang YC, Finley LW et al (2012) Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hegab AE, Ozaki M, Meligy FY et al (2019) Calorie restriction enhances adult mouse lung stem cells function and reverses several ageing-induced changes. J Tissue Eng Regen Med 13:295–308

    Article  CAS  PubMed  Google Scholar 

  89. Maredziak M, Smieszek A, Chrzastek K et al (2015) Physical activity increases the total number of bone-marrow-derived mesenchymal stem cells, enhances their osteogenic potential, and inhibits their adipogenic properties. Stem Cells Int 2015:379093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Onoyama S, Qiu L, Low HP et al (2016) Prenatal maternal physical activity and stem cells in umbilical cord blood. Med Sci Sports Exerc 48:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen T, Shen L, Yu J et al (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10:908–911

    Article  CAS  PubMed  Google Scholar 

  92. Zhang S, Jia Z, Ge J et al (2005) Purified human bone marrow multipotent mesenchymal stem cells regenerate infarcted myocardium in experimental rats. Cell Transplant 14:787–798

    Article  PubMed  Google Scholar 

  93. Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by akt-modified mesenchymal stem cells. Nat Med 11:367–368

    Article  CAS  PubMed  Google Scholar 

  94. Khubutiya MS, Vagabov AV, Temnov AA et al (2014) Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy 16:579–585

    Article  CAS  PubMed  Google Scholar 

  95. Biancone L, Bruno S, Deregibus MC et al (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27:3037–3042

    Article  CAS  PubMed  Google Scholar 

  96. Giebel B, Kordelas L, Borger V (2017) Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles. Stem Cell Investig 4:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Al-Nbaheen M, Vishnubalaji R, Ali D et al (2013) Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev 9:32–43

    Article  CAS  Google Scholar 

  98. Samsonraj RM, Raghunath M, Hui JH et al (2013) Telomere length analysis of human mesenchymal stem cells by quantitative pcr. Gene 519:348–355

    Article  CAS  PubMed  Google Scholar 

  99. Trivanovic D, Jaukovic A, Popovic B et al (2015) Mesenchymal stem cells of different origin: comparative evaluation of proliferative capacity, telomere length and pluripotency marker expression. Life Sci 141:61–73

    Article  CAS  PubMed  Google Scholar 

  100. Cai J, Miao X, Li Y et al (2014) Whole-genome sequencing identifies genetic variances in culture-expanded human mesenchymal stem cells. Stem Cell Reports 3:227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mushahary D, Spittler A, Kasper C et al (2018) Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 93:19–31

    Article  CAS  PubMed  Google Scholar 

  102. Borger V, Bremer M, Ferrer-Tur R et al (2017) Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci 18

    Article  PubMed Central  CAS  Google Scholar 

  103. Angelos MG, Kaufman DS (2015) Pluripotent stem cell applications for regenerative medicine. Curr Opin Organ Transplant 20:663–670

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Reik W, Surani MA (2015) Germline and pluripotent stem cells. Cold Spring Harb Perspect Biol 7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Carpenter MK, Rao MS (2015) Concise review: making and using clinically compliant pluripotent stem cell lines. Stem Cells Transl Med 4:381–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McHugh PR (2004) Zygote and “clonote” – the ethical use of embryonic stem cells. N Engl J Med 351:209–211

    Article  CAS  PubMed  Google Scholar 

  107. Landry DW, Zucker HA (2004) Embryonic death and the creation of human embryonic stem cells. J Clin Invest 114:1184–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. English K, Wood KJ (2011) Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr Opin Organ Transplant 16:90–95

    Article  CAS  PubMed  Google Scholar 

  109. Thompson HL, Manilay JO (2011) Embryonic stem cell-derived hematopoietic stem cells: challenges in development, differentiation, and immunogenicity. Curr Top Med Chem 11:1621–1637

    Article  CAS  PubMed  Google Scholar 

  110. Storchova Z (2016) Too much to differentiate: aneuploidy promotes proliferation and teratoma formation in embryonic stem cells. EMBO J 35:2265–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stachelscheid H, Wulf-Goldenberg A, Eckert K et al (2013) Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors. J Tissue Eng Regen Med 7:729–741

    Article  CAS  PubMed  Google Scholar 

  112. Stojkovic M, Stojkovic P, Leary C et al (2005) Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online 11:226–231

    Article  PubMed  Google Scholar 

  113. Harris J (1997) “Goodbye dolly?” the ethics of human cloning. J Med Ethics 23:353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent es-cell-like state. Nature 448:318–324

    Article  CAS  PubMed  Google Scholar 

  115. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  116. Villa-Diaz LG, Ross AM, Lahann J et al (2013) Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Attwood SW, Edel MJ (2019) Ips-cell technology and the problem of genetic instability-can it ever be safe for clinical use? J Clin Med 8

    Article  CAS  PubMed Central  Google Scholar 

  118. Kanemura H, Go MJ, Shikamura M et al (2014) Tumorigenicity studies of induced pluripotent stem cell (ipsc)-derived retinal pigment epithelium (rpe) for the treatment of age-related macular degeneration. PLoS One 9:e85336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Yoshihara M, Hayashizaki Y, Murakawa Y (2017) Genomic instability of ipscs: challenges towards their clinical applications. Stem Cell Rev 13:7–16

    Article  CAS  Google Scholar 

  120. Ben-David U, Arad G, Weissbein U et al (2014) Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun 5:4825

    Article  CAS  PubMed  Google Scholar 

  121. Sugiura M, Kasama Y, Araki R et al (2014) Induced pluripotent stem cell generation-associated point mutations arise during the initial stages of the conversion of these cells. Stem Cell Reports 2:52–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chin MH, Mason MJ, Xie W et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baum C (2007) Insertional mutagenesis in gene therapy and stem cell biology. Curr Opin Hematol 14:337–342

    Article  CAS  PubMed  Google Scholar 

  124. Wissing S, Munoz-Lopez M, Macia A et al (2012) Reprogramming somatic cells into ips cells activates line-1 retroelement mobility. Hum Mol Genet 21:208–218

    Article  PubMed  CAS  Google Scholar 

  125. Zhao T, Zhang ZN, Rong Z et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  CAS  PubMed  Google Scholar 

  126. Buganim Y, Markoulaki S, van Wietmarschen N et al (2014) The developmental potential of ipscs is greatly influenced by reprogramming factor selection. Cell Stem Cell 15:295–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mills JA, Wang K, Paluru P et al (2013) Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines. Blood 122:2047–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liang G, Zhang Y (2013) Genetic and epigenetic variations in ipscs: potential causes and implications for application. Cell Stem Cell 13:149–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wahlster L, Daley GQ (2016) Progress towards generation of human haematopoietic stem cells. Nat Cell Biol 18:1111–1117

    Article  CAS  PubMed  Google Scholar 

  130. Ban H, Nishishita N, Fusaki N et al (2011) Efficient generation of transgene-free human induced pluripotent stem cells (ipscs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 108:14234–14239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Miere C, Devito L, Ilic D (2016) Sendai virus-based reprogramming of mesenchymal stromal/stem cells from umbilical cord wharton’s jelly into induced pluripotent stem cells. Methods Mol Biol 1357:33–44

    Article  CAS  PubMed  Google Scholar 

  132. Manzini S, Viiri LE, Marttila S et al (2015) A comparative view on easy to deploy non-integrating methods for patient-specific ipsc production. Stem Cell Rev 11:900–908

    Article  CAS  PubMed Central  Google Scholar 

  133. Nishimura K, Sano M, Ohtaka M et al (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286:4760–4771

    Article  CAS  PubMed  Google Scholar 

  134. Miyoshi N, Ishii H, Nagano H et al (2011) Reprogramming of mouse and human cells to pluripotency using mature micrornas. Cell Stem Cell 8:633–638

    Article  CAS  PubMed  Google Scholar 

  135. Liu J, Verma PJ (2015) Synthetic mrna reprogramming of human fibroblast cells. Methods Mol Biol 1330:17–28

    Article  CAS  PubMed  Google Scholar 

  136. Dang J, Rana TM (2016) Enhancing induced pluripotent stem cell generation by microrna. Methods Mol Biol 1357:71–84

    Article  CAS  PubMed  Google Scholar 

  137. Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mrna. Cell Stem Cell 7:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  CAS  PubMed  Google Scholar 

  139. Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Qin H, Zhao A, Zhang C et al (2016) Epigenetic control of reprogramming and transdifferentiation by histone modifications. Stem Cell Rev 12:708–720

    Article  CAS  Google Scholar 

  141. Ando M, Nishimura T, Yamazaki S et al (2015) A safeguard system for induced pluripotent stem cell-derived rejuvenated t cell therapy. Stem Cell Reports 5:597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 21:257–265

    Article  CAS  PubMed  Google Scholar 

  143. Polo JM, Liu S, Figueroa ME et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Malik N, Rao MS (2013) A review of the methods for human ipsc derivation. Methods Mol Biol 997:23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Laurent LC, Ulitsky I, Slavin I et al (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human escs and ipscs during reprogramming and time in culture. Cell Stem Cell 8:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zuba-Surma EK, Kucia M, Abdel-Latif A et al (2008) Morphological characterization of very small embryonic-like stem cells (vsels) by imagestream system analysis. J Cell Mol Med 12:292–303

    Article  PubMed  Google Scholar 

  147. Ratajczak MZ, Marycz K, Poniewierska-Baran A et al (2014) Very small embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Adv Med Sci 59:273–280

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Z. Ratajczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suman, S., Domingues, A., Ratajczak, J., Ratajczak, M.Z. (2019). Potential Clinical Applications of Stem Cells in Regenerative Medicine. In: Ratajczak, M. (eds) Stem Cells. Advances in Experimental Medicine and Biology, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-31206-0_1

Download citation

Publish with us

Policies and ethics