Skip to main content

Diversity, Endemism, and Evolutionary History of Montane Biotas Outside the Andean Region

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Abstract

Mountain ranges are important centers of biodiversity around the world. This high diversity is the result of the presence of different soil types and underlying bedrock, a variety of micro-climatic regimes, high topographic heterogeneity, a heterogeneous and complex vegetation cline, and a dynamic geo-climatic history. Neotropical research on mountains has focused on the Andes, while other mountain ranges are lacking in biodiversity and biogeographic studies. However, the non-Andean mountains comprise important elements of the South American relief, are home to a substantial proportion of Neotropical species, and exhibit a complex and reticulate history of diversification of their biota. Here, we provide a brief review of the biological and biogeographical importance of the major non-Andean South American mountain ranges, discussing their role for diversification and maintenance of Neotropical biodiversity. We focus on six regions: the Serra do Mar Range, the Mantiqueira Mountains, the Espinhaço Mountains, the Northeastern Highlands, the Central Brazilian Highlands, and the Pantepui region. We summarize the main geophysical and biotic characteristics of each mountain range, as well as key results from phylogenetic studies, the fossil record, and studies tackling biogeographical patterns of diversity, richness, and endemism. Moreover, mountain biodiversity studies can incorporate not only environmental data, but also information on more recent man-made landscape shifts. Here, we provide an example of how human population density interacts with climate and species traits to explain richness patterns in one group of montane organisms particularly vulnerable to environmental changes: anuran amphibians. Our results and the evidence published to date indicate that the Neogene and Quaternary were pivotal periods of Neotropical diversification for many terrestrial taxa, promoting endemism in non-Andean mountains. In general, all non-Andean mountain ranges have high levels of species richness and endemism as compared to their surrounding lowlands. Biotic interchange among them, the Andes, and their surrounding biotas has been intensive over tens of millions of years, greatly contributing to the outstanding levels of Neotropical biodiversity observed today. Despite their vast and understudied biodiversity, mountain ecosystems are fragile, facing severe challenges in the face of climate change, habitat loss, and extinctions. Efforts to better understand and protect South American mountain ecosystems are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ab’Saber AN (1967) Domínios morfoclimáticos e províncias fitogeográficas do Brasil. Orient Dep Geografia USP São Paul 3:45–48

    Google Scholar 

  • Ab’Saber AN (1970) Províncias geológicas e domínios morfoclimáticos no Brasil. Geomorfologia 20:1–26

    Google Scholar 

  • Ab’Saber AN (1971) A organização natural das paisagens inter e subtropicais brasileiras In: Modenesi-Gauttieri A, Bartorelli V, Mantesso Neto CDR, Carneiro MA, Lisboa MA (Orgs) 2010 A obra de Aziz Nacib Ab’Saber. Beca, São Paulo, pp 404–414

    Google Scholar 

  • Ab’Saber AN (1974) O domínio morfoclimático semi-árido das Caatinga brasileiras. Geomorfologia 43:1–39

    Google Scholar 

  • Ab’Saber AN (1977) Os domínios morfoclimáticos da América do Sul. Primeira Aproximação. Geomorfologia 52:1–21

    Google Scholar 

  • Ab’Sáber AN (2003) Os domínios de natureza no Brasil. Potencialidades paisagísticas. Ateliê, Cotia

    Google Scholar 

  • Ab’Saber AN, Bernardes N (1958) Vale do Paraíba, Serra da Mantiqueira e arredores de São Paulo: guia da excursão no 4, realizada por ocasião do XVIII Congresso Internacional de Geografia. Conselho Nacional de Geografia, Rio de Janeiro

    Google Scholar 

  • Adams DC, Church JO (2008) Amphibians do not follow Bergmann’s rule. Evolution 62:413–420

    PubMed  Google Scholar 

  • Alkmin FF (2012) Serra do Espinhaço e Chapada Diamantina. In: Hasui Y, Carneiro CDR, Almeida FFM, Bartorelli A (Orgs) Geologia do Brasil. Beca, São Paulo, pp 236–244

    Google Scholar 

  • Almeida FFM (1964) Fundamentos geológicos do relevo paulista. In: Inst Geol Geogr Geologia do Estado de São Paulo. IGG, São Paulo, pp 167–262

    Google Scholar 

  • Almeida AM, Prado PI, Lewinsohn TM (2004) Geographical distribution of Eupatorieae (Asteraceae) in the south-eastern and South Brazilian mountain ranges. Plant Ecol 174:163–181

    Google Scholar 

  • Almeida FC, Bonvicino CR, Cordeiro-Estrela P (2007) Phylogeny and temporal diversification of Calomys (Rodentia, Sigmodontinae): implications for the biogeography of an endemic genus of the open/dry biomes of South America. Mol Phylogenet Evol 42:449–466

    CAS  PubMed  Google Scholar 

  • Amado TF, Bidau CJ, Olalla-Tárraga MÁ (2018) Geographic variation of body size in New World anurans: energy and water in a balance. Ecography 41:1–11

    Google Scholar 

  • Andrade-Lima D (1966) Esboço fitoecológico de alguns “brejos” de Pernambuco. Bol Técnico Inst Pesq Agron Pernamb 8:3–9

    Google Scholar 

  • Andrade-Lima D (1978) Vegetação. In: Lins RC (ed) Bacia do Parnaíba: aspectos fisiográficos. Instituto Joaquim Nabuco de Pesquisas Sociais, Recife, pp 131–135

    Google Scholar 

  • Antonelli A (2015) Multiple origins of mountain life. Nature 524:300–301

    CAS  PubMed  Google Scholar 

  • Antonelli A, Nylander JAA, Persson C, Sanmartín I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci U S A 106:9749–9754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Verola CF, Parisod C, Gustafsson ALS (2010) Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biol J Linn Soc 100:597–607

    Google Scholar 

  • Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch AM, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C (2018a) Geological and climatic influences on mountain biodiversity. Nat Geosci 11:718–725

    CAS  Google Scholar 

  • Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL (2018b) Amazonia is the primary source of Neotropical biodiversity. Proc Natl Acad Sci U S A 115:6034–6039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Ariza M, Albert J, Andermann T, Azevedo JAR, Bacon CD, Faurby S, Guedes TB, Hoorn C, Lohmann LG, Matos-Maraví P, Ritter CD, Sanmartín I, Silvestro D, Tejedor M, ter Steege H, Tuomisto H, Werneck FP, Zizka A, Edwards S (2018c) Conceptual and empirical advances in Neotropical biodiversity research. PeerJ 6:e5644. 1–53

    PubMed  PubMed Central  Google Scholar 

  • Araújo FS, Martins FR, Shephers GJ (1999) Variações estruturais e florísticas do carrasco no Planalto da Ibiapaba, estado do Ceará. Rev Bras Biol 59:663–678

    PubMed  Google Scholar 

  • Ashton KG (2002) Do amphibians follow Bergmann’s rule? Can J Zool 80:708–716

    Google Scholar 

  • Ashton KG, Feldman CR (2003) Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151–1163

    PubMed  Google Scholar 

  • Azevedo JAR, Valdujo PH, Nogueira C (2016) Biogeography of anurans and squamates in the Cerrado hotspot: coincident endemism patterns in the richest and most impacted savanna on the globe. J Biogeogr 43:2454–2464

    Google Scholar 

  • Bacon CD (2013) Biome evolution and biogeographical change through time. Front Biogeogr 5:227–231

    Google Scholar 

  • Bacon CD, Silvestro D, Jaramillo CA, Tilston Smith B, Chakrabarty P, Antonelli A (2015) Biological evidence shows earlier emergence of the Isthmus of Panama. Proc Natl Acad Sci U S A 112:6110–6115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon CD, Velásquez-Puentes F, Flórez-Rodríguez A, Balslev H, Galeano G, Bernal R, Antonelli A (2016) Phylogenetics of Iriarteeae (Arecaceae), cross-Andean disjunctions and convergence of clustered infructescence morphology in Wettinia. Bot J 182:272–286

    Google Scholar 

  • Bacon CD, Moraes M, Jaramillo C, Antonelli A (2017) Endemic palm species shed light on habitat shifts and the assembly of the Cerrado and Restinga Floras. Mol Phylogenet Evol 110:127–133

    PubMed  Google Scholar 

  • Bacon CD, Velásquez-Puentes F, Hoorn C, Antonelli A (2018a) Iriarteeae palms tracked the uplift of Andean Cordilleras. J Biogeogr 45:1653–1663

    Google Scholar 

  • Bacon CD, Velásquez-Puentes FJ, Hinojosa LF, Schwartz T, Oxelman B, Pfeil B, Arroyo MTK, Wanntorp L, Antonelli A (2018b) Evolutionary persistence in Gunnera and the contribution of southern plant groups to the tropical Andes biodiversity hotspot. PeerJ 6:e4388. 1–21

    PubMed  PubMed Central  Google Scholar 

  • Badgley C, Smiley TM, Terry R, Davis EB, DeSantis LRG, Fox DL, Hopkins SSB, Jezkova T, Matocq MD, Matzke N, McGuire JL, Mulch A, Roddle BR, Roth VL, Samuels JX, Strômberg CAE, Yanites BJ (2017) Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol Evol 32:211–226

    PubMed  PubMed Central  Google Scholar 

  • Bartorelli A (2012) Chapada dos Veadeiros. In: Hasui Y, Carneiro CDR, Almeida FFM, Bartorelli A (Orgs) Geologia do Brasil. Beca, São Paulo, pp 326–330

    Google Scholar 

  • Batalha-Filho H, Miyaki CY (2011) Filogeografia da Mata Atlântica. Revista da Biologia, USP Volume Especial Biogeografia, pp 31–34

    Google Scholar 

  • Beerling DJ, Osborne CP (2006) The origin of the savanna biome. Glob Chang Biol 12:2023–2031

    Google Scholar 

  • Bello C, Galetti M, Montan D, Pizo MA et al (2017) Atlantic frugivory: a plant-frugivory interaction data set for the Atlantic Forest. Ecology 98:1729–1729

    PubMed  Google Scholar 

  • Berry PE, Riina R (2005) Insights into the diversity of the Pantepui Flora and the biogeographic complexity of the Guayana Shield. Biol Skr 55:145–167

    Google Scholar 

  • Bonaccorso E, Guayasamin JM (2013) On the origin of Pantepui montane biotas. A perspective based on the phylogeny of Aulacorhynchus toucanets. PLoS One 8:e67321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonatelli IAS, Perez MF, Peterson AT, Taylor NP, Zappi DC, Machado MC, Koch I, Pires AHC, Moraes EM (2014) Interglacial microrefugia and diversification of a cactus species complex: phylogeography and palaeodistributional reconstructions for Pilosocereus aurisetus and allies. Mol Ecol 23:3044–3063

    CAS  PubMed  Google Scholar 

  • Bookhagen B, Strecker MR (2008) Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys Res Lett 35:1–6. https://doi.org/10.1029/2007GL032011

    Article  Google Scholar 

  • Borges SH, Santos MPD, Moreira M, Baccaro F, Capurucho JMG, Ribas C (2018) Dissecting bird diversity in the Pantepui area of endemism, northern South America. J Ornithol 159:1–14

    Google Scholar 

  • Bovendorp RS, Villar N, Abreu-Junior EF, Bello C, Regolin AL, Percequillo A, Galetti M (2017) Atlantic small-mammal: a dataset of communities of rodents and marsupials of the Atlantic forests of South America. Ecology 99:2226–2226

    Google Scholar 

  • Brown KS Jr, Gifford DR (2002) Lepidoptera in the Cerrado landscape and conservation of vegetation, soil and topographical mosaics. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New York, NY, pp 201–222

    Google Scholar 

  • Cabanne GS, Santos FR, Miyaki CY (2007) Phylogeography of Xiphorhynchus fuscus (Passeriformes, Dendrocolaptidae): vicariance and recent demographic expansion in southern Atlantic forest. Biol J Linn Soc 91:73–84

    Google Scholar 

  • Cadena CD (2007) Testing the role of interspecific competition in the evolutionary origin of elevational zonation: an example with Buarremon brush-finches (Aves, Emberizidae) in the Neotropical Mountains. Evolution 61:1120–1136

    PubMed  Google Scholar 

  • Capurucho JMG, Ashley MV, Ribas CC, Bates JM (2018) Connecting Amazonian, Cerrado, and Atlantic forest histories: paraphyly, old divergences, and modern population dynamics in tyrant-manakins (Neopelma/Tyranneutes, Aves: Pipridae). Mol Phylogenet Evol 127:696–705

    PubMed  Google Scholar 

  • Cardoso-da-Silva JM, Cardoso-de-Sousa M, Castelletti CHM (2004) Areas of endemism for passerine birds in the Atlantic forest, South America. Glob Ecol Biogeogr 13:85–92

    Google Scholar 

  • Carnaval AC, Bates JM (2007) Amphibian DNA shows marked genetic structure and tracks Pleistocene climate change in northeastern Brazil. Evolution 61:2942–2957

    CAS  PubMed  Google Scholar 

  • Carnaval AC, Moritz C, Hickerson M, Haddad C, Rodrigues M (2009) Stability predicts diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789

    CAS  PubMed  Google Scholar 

  • Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, Prates I, Strangas M, Spanos Z, Rivera D, Pie MR, Firkowski CR, Bornschein MR, Ribeiro LF, Moritz C (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc R Soc B Biol Sci 281:1–8

    Google Scholar 

  • Carneiro J, Sampaio I, de Sousa e Silva-Júnior J, Farias I, Hrbek T, Pissinatti A, Silva R, Martins-Junior A, Boubli J, Ferrari SF, Schneider H (2018) Phylogeny, molecular dating and zoogeographic history of the titi monkeys (Callicebus, Pitheciidae) of eastern Brazil. Mol Phylogenet Evol 124:10–15

    PubMed  Google Scholar 

  • Carvalho Junior OA, Guimarães RF, Martins ES, Gomes RAT (2015) Chapada dos Veadeiros: The highest landscapes in the Brazilian Central Plateau. In: Vieira B, Salgado A, Santos L (eds) Landscapes and landforms of Brazil. world geomorphological landscapes. Springer, Dordrecht, pp 221–230

    Google Scholar 

  • Castroviejo-Fisher S, Guayasamin JM, Gonzales-Voyer A, Vilà C (2014) Neotropical diversification seen through glassfrogs. J Biogeogr 41:66–80

    Google Scholar 

  • Chaves AV, Freitas GHS, Vasconcelos MF, Santos FR (2014) Biogeographic patterns, origin and speciation of the endemic birds from eastern Brazilian mountaintops: a review. Syst Biodivers 13:1–16

    Google Scholar 

  • Conceição AA, Pirani JR (2007) Diversidade em quatro áreas de campos rupestres na Chapada Diamantina, Bahia, Brazil: Espécies distintas, mas riquezas similares. Rodriguesia 58:193–206

    Google Scholar 

  • Conceição AA, Rapini A, Pirani JR, Giulietti AM, Harley RM, Silva TRS, Santos AKA, Correia C, Andrade IM, Costa JAS, Souza LRS, Andrade MJG, Funch RR, Freitas AMM, Oliveira AA (2005) Campos Rupestres. In: Juncá FA, Funch L, Rocha W (Orgs) Biodiversidade e Conservação da Chapada Diamantina. Ministério do Meio Ambiente, Brasília, pp 153–168

    Google Scholar 

  • Costa FN, Trovó M, Sano PT (2008) Eriocaulaceae na Cadeia do Espinhaço: riqueza, endemismo e ameaças. Megadiversidade 4:91–99

    Google Scholar 

  • Costa GC, Hampe A, Ledru M, Martinez PA, Mazzochini GG, Shepard DB, Werneck FP, Moritz C, Carnaval AC (2017) Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Glob Ecol Biogeogr 27:285–297

    Google Scholar 

  • Culot L, Pereira LA, Agostini I, Almeida MAB et al (2019) Atlantic-primates: a dataset of communities and occurrences of primates in the Atlantic forest of South America. Ecology 100:2525–2525

    Google Scholar 

  • da Silva FR, Almeida-Neto M, do Prado VHM, Haddad CFB, Rossa-Feres DC (2012) Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest. J Biogeogr 39:1720–1732

    Google Scholar 

  • Dantas GPMA, Cabanne GSN, Santos FCR (2011) How past vicariant events can explain the Atlantic Forest biodiversity? In: Grillo O, Venora G (eds) Ecosystems biodiversity. InTech, Rijeka, pp 429–442

    Google Scholar 

  • de Mello-Silva R (2010) Circumscribing Vellozia hirsuta and V. tubiflora (Velloziaceae). Hoehnea 37:617–646

    Google Scholar 

  • Dean W (1997) With broadax and firebrand: the destruction of the Brazilian Atlantic Forest. University of California Press, Berkeley, CA

    Google Scholar 

  • Derby OA (1906) The Serra do Espinhaço, Brazil. J Geol 14:374–401

    Google Scholar 

  • Derryberry EP, Claramunt S, Derryberry G, Chesser RT, Cracraft J, Aleixo A, Pérez-Emán J, Remsen JV, Brumfield RT (2011) Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65:2973–2986

    PubMed  Google Scholar 

  • Désamoré A, Vanderpoorten A, Laenen B, Gradstein SR, Kok PJR (2010) Biogeography of the lost world (Pantepui region, northeastern South America): insights from bryophytes. Phytotaxa 9:254–265

    Google Scholar 

  • Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31:17–30

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Kurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Google Scholar 

  • DRYFLOR (2016) Plant diversity patterns and their conservation implications in Neotropical dry Forests. Science 353:1383–1387

    Google Scholar 

  • Echternacht L, Trovó M, Oliveira CT, Pirani JR (2011) Areas of endemism in the Espinhaço Range in Minas Gerais, Brazil. Flora 206:782–791

    Google Scholar 

  • Eiserhardt WL, Couvreur TLP, Baker WJ (2017) Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. New Phytol 214:1408–1422

    PubMed  Google Scholar 

  • Emmons LH (1999) Two new species of Juscelinomys (Rodentia: Muridae) from Bolivia. Am Mus Novit 3280:1–15

    Google Scholar 

  • Ewers RM, Didham RK (2005) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:11–142

    Google Scholar 

  • Fernandes D, Hamdan B (2014) A new species of Chironius Fitzinger, 1826 from the state of Bahia, Northeastern Brazil (Serpentes: Colubridae). Zootaxa 3881:563–575

    PubMed  Google Scholar 

  • Fernandes GW, Barbosa NPU, Alberton B, Barbieri A, Dirzo R, Goulart F, Guerra TJ, Morellato LPC, Solar RRC (2018) The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands. Biodivers Conserv 27:1–17

    CAS  Google Scholar 

  • Fine PVA, Lohmann LG (2018) Importance of dispersal in the assembly of the Neotropical biota. Proc Natl Acad Sci U S A 115:5829–5831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Blaschke M, Bässler C (2011) Altitudinal gradients in biodiversity research: the state of the art and future perspectives under climate change aspects. Waldökologie, Landschaftsforschung und Naturschutz 11:35–47

    Google Scholar 

  • Fjeldså J, Bowie RCK, Rahbek C (2012) The role of mountain ranges in the diversification of birds. Annu Rev Ecol Evol Syst 43:249–265

    Google Scholar 

  • Fouquet A, Recoder R, Teixeira M Jr, Cassimiro J, Amaro RC, Camacho A, Damasceno R, Carnaval AC, Moritz C, Rodrigues MT (2012) Molecular phylogeny and morphometric analyses reveal deep divergence between Amazonia and Atlantic Forest species of Dendrophryniscus. Mol Phylogenet Evol 62:823–838

    Google Scholar 

  • Freitas GHS, Chaves AV, Costa LM, Santos FR, Rodrigues M (2012) A new species of Cinclodes from the Espinhaço Range, southeastern Brazil: insights into the biogeographical history of the South American highlands. Int J Avian Sci 154:738–755

    Google Scholar 

  • Funch LS, Funch RR, Harley R, Giulietti AM, Queiroz LP, França F, de Melo E, Gonçalves CN, Santos T (2005) Florestas Estacionais Semideciduais. In: Juncá FA, Funch L, Rocha W (Orgs) Biodiversidade e Conservação da Chapada Diamantina. Ministério do Meio Ambiente, Brasília, pp 180–193

    Google Scholar 

  • Galindo-Leal C, Câmara IG (2003) Atlantic Forest hotspots status: an Overview. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Island Press, Washington, DC, pp 3–11

    Google Scholar 

  • Garey MV, Provete DB (2016) Conservation status, threat sources, and endemism of anurans in highland grasslands in Southern and Southeastern Brazil. Oecol Aust 20:94–108

    Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, New York

    Google Scholar 

  • Gibbs AK, Barron CN (1993) The geology of the Guiana Shield. Oxford University Press, New York

    Google Scholar 

  • Giugliano LG, Collevatti RG, Colli GR (2007) Molecular dating and phylogenetic relationships among Teiidae (Squamata) inferred by molecular and morphological data. Mol Phylogenet Evol 45:168–179

    CAS  PubMed  Google Scholar 

  • Giulietti AM, Pirani JR (1988) Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, Brazil. In: Vanzolini PE, Heyer WR (eds) Proceedings of a workshop on Neotropical distribution patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp 39–69

    Google Scholar 

  • Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region, eastern Brazil. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity: a guide strategy for their conservation, vol 3. IUCN Publication Unity, Cambridge, pp 397–404

    Google Scholar 

  • Givnish TJ, Barfuss MH, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabailey RS, Crayn DM, Smith JA, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Systsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895

    PubMed  Google Scholar 

  • GMBA (2018) Global Mountain Biodiversity Assessment. http://www.gmba.unibe.ch/about_us/background/. Accessed 23 July 2018

  • Gontijo-Pascutti AHF, Hasui Y, Santos M, Júnior AVS, Souza IA (2012) As Serras do Mar e Mantiqueira. In: Hasui Y, Carneiro CDR, Almeida FFM, Bartorelli A (Orgs) Geologia do Brasil. Beca, São Paulo, pp 549–571

    Google Scholar 

  • Guedes TB, Sawaya RJ, Nogueira CC (2014) Biogeography, vicariance and conservation of snakes of the neglected and endangered Caatinga region, northeastern Brazil. J Biogeogr 41:19–931

    Google Scholar 

  • Guedes TB, Sawaya R, Zizka A, Laffan S, Faurby S, Pyron RA, Bérnils RS, Jansen M, Passos P, Prudente ALC, Cisneros-Heredia DF, Braz HB, Nogueira CC, Antonelli A (2018) Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. Glob Ecol Biogeogr 27:14–21

    PubMed  Google Scholar 

  • Harley RM, Giulietti AM, Grilo AS, Silva TRS, Funch L, Funch RR, Queiroz LP, França F, Melo E, Gonçalves CN, Nascimento FHF (2005) Cerrado. In: Juncá FA, Funch L, Rocha W (Orgs) Biodiversidade e Conservação da Chapada Diamantina. Ministério do Meio Ambiente, Brasília, pp 121–152

    Google Scholar 

  • Henriques RPB (2005) Influência da história, solo e fogo na distribuição e dinâmica das fitofisionomias no bioma Cerrado. In: Souza Silva JC, Felfili JM (eds) Cerrado: ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, Brasília, pp 73–92

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Homeier J, Breckle SW, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140–148

    Google Scholar 

  • Hoorn C, Mosbrugger V, Mulch A, Antonelli A (2013) Mountain building and biodiversity. Nat Geosci 6:154

    CAS  Google Scholar 

  • Hoorn C, Perrigo A, Antonelli A (2018a) Mountains, climate and biodiversity: an introduction. In: Hoorn C, Perrigo A, Antonelli A (eds) Mountains, climate and biodiversity. Wiley-Blackwell, Hoboken, NJ, pp 1–15

    Google Scholar 

  • Hoorn C, Perrigo A, Antonelli A (2018b) Mountains, climate and biodiversity. Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  • Hua X, Wiens JJ (2010) Latitudinal variation in speciation mechanisms in frogs. Evolution 64:429–443

    PubMed  Google Scholar 

  • Huber O (1988) Vegetation y Flora de Panteui, Region Guayana. Acta Bot Bras 1:41–52

    Google Scholar 

  • Huber O (1995) Geographical and physical features. In: Berry PE, Holst BK, Yatskievych K (eds) Flora of the venezuelan Guayana. Voli. 1. Introduction. Missouri Botanical Garden, St Louis, pp 1–61

    Google Scholar 

  • Huber O, Prance GT, Kroonenberg SB, Antonelli A (2018) The Tepuis of the Guiana Highlands. In: Hoorn C, Perrigo A, Antonelli A (eds) Mountains, climate and biodiversity. Wiley-Blackwell, Hoboken, NJ, pp 339–353

    Google Scholar 

  • Hughes CE, Atchison GW (2015) The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol 207:275–282

    PubMed  Google Scholar 

  • IUCN (International Union for Conservation of Nature), Conservation International, and NatureServe (2009) Global amphibian assessment. IUCN, Gland

    Google Scholar 

  • Kessler M (2001) Patterns of diversity and range size of selected plant groups along an elevation transect in the Bolivia Andes. Biodivers Conserv 10:1897–1921

    Google Scholar 

  • Kok PJR (2013) Islands in the sky: species diversity, evolutionary history, and patterns of endemism of the Pantepui Herpetofauna. Institute of Biology (IBL)/National Herbarium Nederland (NHN), Faculty of Science, Leiden University

    Google Scholar 

  • Körner C (2004) Mountain biodiversity, its causes and function. Ambio 13:11–17

    Google Scholar 

  • Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM (2017) A global inventory of mountains for bio-geographical applications. Alp Bot 127:1–15

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacomunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Google Scholar 

  • Leite FSF, Juncá FA, Eterovick PC (2008) Status do conhecimento, endemismo e conservação de anfíbios anuros da Cadeia do Espinhaço, Brasil. Megadiversidade 4:158–176

    Google Scholar 

  • Leite YLR, Kok PJR, Weksler M (2015) Evolutionary affinities of the “Lost World” mouse suggest a late Pliocene connection between the Guiana and Brazilian shields. J Biogeogr 42:706–715

    Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052

    CAS  PubMed  Google Scholar 

  • Loyola RD, Kubota U, Fonseca GAB, Lewinsohn TM (2009) Key Neotropical ecoregions for conservation of terrestrial vertebrates. Biodivers Conserv 18:2017–2031

    Google Scholar 

  • Luebert F, Muller LAH (2015) Effects of mountain formation and uplift on biological diversity. Front Genet 6:1–2

    Google Scholar 

  • Luebert F, Weigend M (2014) Phylogenetic insights into Andean plant diversification. Front Ecol Evol 2:1–17

    Google Scholar 

  • Lynch JD (1989) The gauge of speciation: on the frequencies of modes of speciation. In: Otte D, Endler J (eds) Speciation and its consequences. Sinauer Associates, Sunderland, MA, pp 527–553

    Google Scholar 

  • Machado T, Silva VX, de Silva MJ (2014) Phylogenetic relationships within Bothrops neuwiedi group (Serpentes, Squamata): geographically high-structured lineages, evidence of introgressive hybridization and Neogene/Quaternary diversification. Mol Phylogenet Evol 71:1–14

    PubMed  Google Scholar 

  • Magalhães AP, Barros LF, Felippe MF (2015) Southern Serra do Espinhaço: the impressive plateau of quartzite ridges. In: Vieira B, Salgado A, Santos L (eds) Landscapes and landforms of Brazil. World geomorphological landscapes. Springer, Dordrecht, pp 359–370

    Google Scholar 

  • Marinho-Filho J, Rodrigues FHG, Juarez KM (2002) The Cerrado mammals: diversity, ecology, and natural history. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a Neotropical savana. Columbia University Press, New York, pp 266–284

    Google Scholar 

  • Marquet PA, Fernández M, Navarrete SA, Valdovinos C (2004) Species richness emerging: toward a deconstruction of species richness patterns. In: Lomolino M, Lawrence R (eds) Frontiers in biogeography: new directions in the geography of nature. Sinauer Associates, Sunderland, MA, pp 191–209

    Google Scholar 

  • McDiarmid RW, Donnelly MA (2005) The herpetofauna of the Guayana Highlands: amphibians and reptiles of the lost world. In: Donnelly MA, Crother BI, Guyer C, Wake MH, White ME (eds) Ecology and evolution in the tropics: a herpetological perspective. University of Chicago Press, Chicago, IL, pp 461–560

    Google Scholar 

  • Medeiros MCMP, Mattos IFA, Kanashiro MM, Tamashiro JY, Aidar MPM (2012) Vegetation mapping in an area of Ombrophilous Dense Forest at Parque Estadual da Serra do Mar, São Paulo State, Brazil, and floristic composition of the tree component of some physiognomies. Hoehnea 39:219–233

    Google Scholar 

  • Merckx VSFT, Hendriks KP, Beentjes KK et al (2015) Evolution of endemism on a young tropical mountain. Nature 524:347–350

    CAS  PubMed  Google Scholar 

  • Modenesi-Gauttieri MC, Hiruma ST, Riccomini C (2002) Morphotectonics of a high plateau on the northwestern flank of the Continental Rift of southeastern Brazil. Geomorphology 43:257–271

    Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest. Biotropica 32:786–792

    Google Scholar 

  • Morrison C, Hero JM (2003) Geographic variation in life-history characteristics of amphibians: a review. J Anim Ecol 72:270–279

    Google Scholar 

  • Morrone J (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:1–110

    PubMed  Google Scholar 

  • Moura MR, Villalobos F, Costa GC, Garcia PCA (2016) Disentangling the role of climatic, topography and vegetation in species richness gradients. PLoS One 3:1–16

    Google Scholar 

  • Munhoz CBR, Felfili JM (2006) Floristics of the herbaceous and subshrub layer of a moist grassland in the Cerrado biosphere reserve (Alto Paraíso de Goiás), Brazil. Edinb J Bot 63:343–354

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Google Scholar 

  • Napoli MF, Juncá FA (2006) A new species of the Bokermannohyla circumdata group (Amphibia: Anura: Hylidae) from Chapada Diamantina, State of Bahia, Brazil. Zootaxa 1244:57–68

    Google Scholar 

  • Neves DM, Dexter KG, Pennington RT, Bueno ML, de Miranda PLS, Oliveira-Filho AT (2018a) Lack of floristic identity in campos rupestres: a hyperdiverse mosaic of rocky montane savannas in South America. Flora 238:24–31

    Google Scholar 

  • Neves MO, Pereira EA, Sugai JLMM, Rocha SB, Da Feio RN, Santana DJ (2018b) Distribution pattern of anurans from three mountain complexes in southeastern Brazil and their conservation implications. An Acad Bras Cienc 90:1611–1623

    PubMed  Google Scholar 

  • Oliveira U, Paglia AP, Brescovit AD, Carvalho CJB, Silva DP, Rezende DT, Leite FS, Batista JA, Barbosa JPP, Stehmann JR, Ascher JS, Vasconcelos MF, De Marco P Jr, Löwenberg-Neto P, Dias PG, Ferro VG, Santos AJ (2016) The strong influence of collection bias on biodiversity kwnoledge shortfalls of Brazilian terrestrial biodiversity. Divers Distrib 22:1232–1244

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura HE, Lamoreux JF, Wettngel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. BioSciences 51:933–938

    Google Scholar 

  • Papadopoulou A, Knowles LL (2016) Toward a paradigm shift in comparative phylogeography driven by trait-based hypothesis. Proc Natl Acad Sci U S A 29:8018–8024

    Google Scholar 

  • Pavan SE, Jansa S, Voss RS (2016) Spatiotemporal diversification of a low-vagility Neotropical vertebrate clade (short-tailed opossums, Didelphidae: Monodelphis). J Biogeogr 43:1299–1309

    Google Scholar 

  • Petri S, Sanches EAM (2012) Chapada dos Guimarães. In: Hasui Y, Carneiro CDR, Almeida FFM, Bartorelli A (Orgs) Geologia do Brasil. Beca, São Paulo, pp 413–418

    Google Scholar 

  • Prates I, Xue AT, Brown JL, Alvarado-Serrano DF, MTU R, Hickerson MJ, Carnaval AC (2016) Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proc Natl Acad Sci U S A 113:7978–7985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian H, Ricklefs RE (2007) A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol Lett 10:737–744

    PubMed  Google Scholar 

  • Queiroz LP, França F, Giulietti AM Melo E, Gonçalves CN, Funch LS, Harley RM, Funch RR, Silva TS (2005) Caatinga. In: Juncá FA, Funch L, Rocha W (Orgs) Biodiversidade e Conservação da Chapada Diamantina. Ministério do Meio Ambiente, Brasília, pp 95–120

    Google Scholar 

  • Quintero I, Keil P, Jetz W, Crawford FW (2015) Historical biogeography using species grographical ranges. Syst Biol 64:1059–1073

    PubMed  PubMed Central  Google Scholar 

  • Ramos EKS, de Magalhães RF, Sari EHR, Rosa AHB, Garcia PCA, Santos FR (2018) Population genetics and distribution data reveal conservation concerns to the sky island endemic Pithecopus megacephalus (Anura, Phyllomedusidae). Conserv Genet 19:99–110

    Google Scholar 

  • Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50

    Google Scholar 

  • Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361:1–15

    Google Scholar 

  • Rapini A, Ribeiro PL, Lambert S, Pirani JR (2008) A flora dos campos rupestres da Cadeia do Espinhaço. Megadiversidade 4:16–24

    Google Scholar 

  • Ribeiro KT, Medina BMO, Scarano FR (2007) Species composition and biogeographic relations of the rock outcrop flora on the high plateau of Itatiaia, SE-Brazil. Rev Bras Bot 30:623–639. https://doi.org/10.1590/S0100-84042007000400008

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Google Scholar 

  • Ribeiro PL, Rapini A, Damascena LS, van den Berg C (2014) Plant diversification in the Espinhaço Range: insights from the biogeography of Minaria (Apocynaceae). Taxon 63:1253–1264

    Google Scholar 

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15

    Google Scholar 

  • Rocha WJSF, Chaves JM, Rocha CC, Lobão JB (2005) Unidades de paisagem da Chapada Diamantina-BA. In: Juncá FA, Funch L, Rocha W (Orgs) Biodiversidade e Conservação da Chapada Diamantina. Ministério do Meio Ambiente, Brasília, pp 47–64

    Google Scholar 

  • Rodrigues MT, de Freitas MA, Silva TFS, Bertolotto CEV (2006) A new species of lizard genus Enyalius (Squamata, Leiosauridae) from the highlands of Chapada Diamantina, state of Bahia, Brazil, with a key to species. Phyllomedusa 5:11–24

    Google Scholar 

  • Romano A, Ficetola GF (2010) Ecogeographic variation of body sixe in the spectacled salamanders (Salamandrina): influence of genetic structure and local factors. J Biogeogr 27:2358–2370

    Google Scholar 

  • Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnityn AP (2012) A total-evidence approach to dating with fossils applied to the early radiation of the hymenoptera. Syst Biol 61:973–999

    PubMed  PubMed Central  Google Scholar 

  • Rull V (2004) Biogeography of the ‘lost world’: a palaeoecological perspective. Earth Sci Rev 67:125–137

    Google Scholar 

  • Rull V (2005) Biotic diversification in the Guayana Highlands: a proposal. J Biogeogr 32:921–927

    Google Scholar 

  • Rull V (2011) Neotropical biodiversity: timing and potential drivers. Trends Ecol Evol 26:508–513

    Google Scholar 

  • Rull V, Nogué S (2007) Potential migration routes and barriers for vascular plants of the Neotropical Guyana Highlands during the Quaternary. J Biogeogr 34:1327–1341

    Google Scholar 

  • Rundel PW, Smith AP, Meinzer FC (1994) Tropical alpine environments: plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Saadi A (1995) A Geomorfologia da Serra Do Espinhaço em Minas Gerais e de suas Margens. Geonomos 3:41–63

    Google Scholar 

  • Safford HD (1999a) Brazilian Páramos I. An introduction to the physical environment and vegetation of the campos de altitude. J Biogeogr 26:693–712

    Google Scholar 

  • Safford HD (1999b) Brazilian Páramos II. Macro- and mesoclimate of the Campos de Altitude and affinities with high mountain climates of the tropical Andes and Costa Rica. J Biogeogr 26:713–737

    Google Scholar 

  • Safford HD (2007) Brazilian Páramos IV. Phytogeography of the Campos de Altitude. J Biogeogr 34:1701–1722

    Google Scholar 

  • Salino A, Almeida TE (2008) Diversidade e conservação das pteridófitas na Cadeia do Espinhaço, Brasil. Megadiversidade 4(1–2):78–98

    Google Scholar 

  • Sancha NU, Higgins CL, Presley SJ, Strauss RE (2014) Metacommunity structure in a highly fragmented forest: has deforestation in the Atlantic Forest altered historic biogeographic patterns? Divers Distrib 20:1058–1070

    Google Scholar 

  • Sánchez-Baracaldo P (2004) Phylogenetics and biogeography of the Neotropical fern genera Jamesonia and Eriosorus (Pteridaceae). Am J Bot 91:274–284

    PubMed  Google Scholar 

  • Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC (2011) The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660–664

    CAS  PubMed  Google Scholar 

  • Sanín MJ, Kissling WD, Bacon CD, Borchsenius F, Galeano G, Svenning JC, Olivera J, Ramírez R, Trénel P, Pintaud JC (2016) The Neogene rise of the tropical Andes facilitated diversification of wax palms (Ceroxylon: Arecaceae) through geographical colonization and climatic niche separation. Bot J 182:303–317

    Google Scholar 

  • Santoro GRCC, Brandão RA (2014) Reproductive modes, habitat use, and richness of anurans from Chapada dos Veadeiros, central Brazil. North West J Zool 10:365–373

    Google Scholar 

  • Santos JP, Freitas AVL, Brown KS Jr, Carreira JYO et al (2018) Atlantic butterflies: a data set of fruit-feeding butterfly communities from the Atlantic Forests. Ecology 99:2875–2875

    PubMed  Google Scholar 

  • Schipper J, Chanson JS, Chiozza F et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230

    CAS  PubMed  Google Scholar 

  • Schuchmann KL (1999) Family Trochilidae (Hummingbirds). In: Del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world. Lynx Edicions, Barcelona, pp 468–680

    Google Scholar 

  • Silva JMC (1997) Endemic bird species and conservation in the Cerrado Region, South America. Biodivers Conserv 6:435–450

    Google Scholar 

  • Silva ET, Peixoto MAA, Leite FSF, Feio RN, Garcia PCA (2018) Anuran distribution in a highly diverse region of the Atlantic Forest: the Mantiqueira Mountain Range in Southeastern Brazil. Herpetologica 74:294–305

    Google Scholar 

  • Silvestro D, Zizka A, Bacon CD, Cascales-Miñna B, Salamin N, Antonelli A (2016) Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data. Philos Trans R Soc B 371:20150225

    Google Scholar 

  • Simon MF, Proença C (2000) Phytogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil: an indicator genus of high-altitude centers of endemism? Biol Conserv 96:279–296

    Google Scholar 

  • Simon MF, Grether R, Quieroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a Neotropical plant diversity hotspot. Proc Natl Acad Sci U S A 106:20359–20364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skeels A, Cardillo M (2019) Reconstructing the geography of speciation from contemporary biodiversity data. Am Nat 193:000–000

    Google Scholar 

  • Tabarelli M, Santos AMM (2004) Uma breve descrição sobre a história natural dos brejos nordestinos. In: Pôrto KC, Cabral JJP, Tabarelli M (Orgs) Brejos de altitude em Pernambuco e Paraíba. História natural, ecologia e conservação. Ministério do Meio Ambiente, Brasília, pp 17–24

    Google Scholar 

  • Thomé MTC, Zamudio KR, Haddad CFBF, Alexandrino JO (2014) Barriers, rather than refugia, underlie the origin of diversity in toads endemic to the Brazilian Atlantic Forest. Mol Ecol 23:6152–6164

    PubMed  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond Ser B Biol Sci 270:467–473

    CAS  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of Wester Amazonian Forests. Science 299:241–244

    CAS  PubMed  Google Scholar 

  • Vancine MH, Duarte KS, Souza YS, Giovanelli JGR et al (2018) Atlantic Amphibians: a data set of amphibian communities from the Atlantic Forests of South America. Ecology 99:1692–1692

    PubMed  Google Scholar 

  • Vasconcelos TS, Prado VHM, da Silva FR, Haddad CFB (2014) Biogeographic distribution patterns and their correlates in the diverse frog fauna of the Atlantic Forest hotspot. PLoS One 9:e104130

    PubMed  PubMed Central  Google Scholar 

  • Veloso HP, Rangel-Filho ALR, Lima JC (1991) Classificação da vegetação brasileira adaptada a um sistema universal. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • Versieux LM, Wendt T, Louzada RB, Wanderleu MGL (2008) Bromeliaceae da Cadeia do Espinhaço. Megadiversidade 4:99–110

    Google Scholar 

  • Viana PL, Filgueiras TS (2008) Inverntário e distribuicão geográfica das gramíneas (Poaceae) na Cadeia do Espinhaço, Brasil. Megadiversidade 4:71–88

    Google Scholar 

  • Villalobos F, Dobrovolski R, Provete DB, Gouvea SF (2013) Is rich and rare the common share? Describing biodiversity and informing conservation practices for South American amphibians. PLoS One 8:e56073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinarski MV (2014) On the applicability of Bergmann’s rule to ectotherms: the state of the art. Biol Bull Rev 4:232–242

    Google Scholar 

  • Werneck FP, Gamble T, Colli GR, Rodrigues MT, Sites JW Jr (2012) Deep diversification and long-term persistence in the South American “dry diagonal”: integrating continent-wide phylogeography and distribution modeling of Gekos. Evolution 66:3014–3034

    PubMed  Google Scholar 

  • Wiens JJ, Graham CH, Moen DS, Smith SA, Reeder TW (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am Nat 168:579–596

    PubMed  Google Scholar 

  • Wulf A (2016) The invention of nature: Alexander von Humboldt’s New World. Vintage Publisher, London

    Google Scholar 

  • Zamora-Camacho FJ, Reguera S, Moreno-Rueda G (2014) Bergmann’s rule rules body size in an ectotherm: heat conservation in a lizard along a 2200-metre elevational gradient. J Evol Biol 27:2820–2828

    CAS  PubMed  Google Scholar 

  • Zamudio KR, Bell RC, Mason NA (2016) Phenotypes in phylogeography: species’ traits, environmental variation, and vertebrate diversification. Proc Natl Acad Sci U S A 113:8041–8048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zizka A, Antonelli A (2018) Mountains of diversity. Nature 555:173–174

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Valentí Rull and Ana Carnaval for inviting us to contribute this chapter. One anonymous reviewer and Ana Carnaval provided excellent feedback that improved the manuscript. We thank various colleagues in our research groups and scientific networks who have discussed the ideas presented here. We also thank Giulia B. D’Angelo and Marcela Nascimento for providing the bird and mammal photos from the Serra do Mar Range in Fig. 13.2. Funding for this work was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2014/18837-7) and State University of Maranhão, “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES 99999.001292/2015-03), the Swedish Research Council (B0569601), the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013, ERC Grant Agreement n. 331024), the Swedish Foundation for Strategic Research, the Biodiversity and Ecosystems in a Changing Climate (BECC) programme, and a Wallenberg Academy Fellowship to A.A.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guedes, T.B., Azevedo, J.A.R., Bacon, C.D., Provete, D.B., Antonelli, A. (2020). Diversity, Endemism, and Evolutionary History of Montane Biotas Outside the Andean Region. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_13

Download citation

Publish with us

Policies and ethics