Skip to main content

On the Young Savannas in the Land of Ancient Forests

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Abstract

Covering ancient geomorphological landscapes, and surrounded by some of the most diverse forests on Earth, the Neotropical savannas were once perceived by naturalists as ancient environments. However, current evidence suggests that tropical forests have existed in the Neotropics since the Paleocene, whereas most plant lineages present in South American savannas are recently derived from clades from the surrounding forested biomes. This chapter provides a multidisciplinary overview on the origin, assembly and expansion of Neotropical savannas, with focus on South America. For this, we consider available evidence from the fossil record, paleoenvironmental proxies (phytoliths), and phylogenetic information for both plants and animals. Paleoenvironmental reconstructions indicate suitable climates for central South American savannas since the middle Miocene, which is also when molecular phylogenies indicate the origin of some vertebrate groups typical of savannas. Fossil data indicate the ecological expansion of both C3 and C4 grasses in southern South America by the late Miocene. Fossil information also indicates the onset of savannas in northern South America during the Pliocene, a period in which most woody plants of the largest extension of Neotropical savannas (the Cerrado) are thought to have diversified, as inferred by dated phylogenies. Although the combined lines of evidence indicate that Neotropical savannas in South America are indeed younger than their surrounding forests, the precise timing and factors that influenced the origin, assembly and expansion of Neotropical savannas remain contentious. Future research should aim at (1) increasing and integrating knowledge about the diversification of important taxa characteristic to Neotropical savannas, (2) establishing continuous sequences of fossils, and (3) building accurate paleoenvironmental reconstructions for the entire Neogene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ab’Sáber A (2003) Os domínios de natureza no Brasil: potencialidades paisagísticas. Ateliê Edi, São Paulo

    Google Scholar 

  • Abrahamson WG (2007) Leaf traits and leaf life spans of two xeric-adapted palmettos. Am J Bot 94:1297–1308

    PubMed  Google Scholar 

  • Aguiar AJC, Melo GAR (2007) Taxonomic revision, phylogenetic analysis, and biogeography of the bee genus Tropidopedia (Hymenoptera, Apidae, Tapinotaspidini). Zool J Linnean Soc 151:511–554

    Google Scholar 

  • Alfaro JWL, Cortés-Ortiz L, Di Fiore A, Boubli JP (2015) Comparative biogeography of Neotropical primates. Mol Phylogenet Evol 82:518–529

    Google Scholar 

  • Almeida FC, Bonvicino CR, Cordeiro-Estrela P (2007) Phylogeny and temporal diversification of Calomys (Rodentia, Sigmodontinae): implications for the biogeography of an endemic genus of the open/dry biomes of South America. Mol Phylogenet Evol 42:449–466

    CAS  PubMed  Google Scholar 

  • Amson E, Carrillo JD, Jaramillo C (2016) Neogene sloth assemblages (Mammalia, Pilosa) of the Cocinetas basin (La Guajira, Colombia): implications for the Great American biotic interchange. Palaeontology 59:563–582

    Google Scholar 

  • Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL (2018a) Amazonia is the primary source of Neotropical biodiversity. Proc Natl Acad Sci U S A 115(23):6034–6039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Ariza M, Albert J, Andermann T, Azevedo J, Bacon CD, Faurby S, Guedes T, Hoorn C, Lohmann LG, Matos-Maraví P, Ritter CD, Sanmartin I, Silvestro D, Tejedor M, ter Steege H, Tuomisto H, Werneck FP, Zizka A, Edwards SV (2018b) Conceptual and empirical advances in Neotropical biodiversity research. PeerJ 6:e5644

    PubMed  PubMed Central  Google Scholar 

  • Archibald S, Levin S, Archibald SA, Hoffmann WA, Bond WJ, Hanan N, Ratnam J, Hawthorne W, Orgle T, Roy D, Wilgen B, Van Scholes R, Duff G, Bowman D, Cook G, Batalha MA, Pivello VR, Meirelles ST, Caylor KK, Kolle O, Lloyd J, Stocks B, Levine J, Jeugd HVD, Stock WD, Rensburg SJV, Waldram MS, Bond W, Stock W, Fairbanks D (2011) Global resilience of tropical forest. Science 334:232–235

    Google Scholar 

  • Azevedo JAR, Valdujo PH, Nogueira C (2016) Biogeography of anurans and squamates in the Cerrado hotspot: coincident endemism patterns in the richest and most impacted savanna on the globe. J Biogeogr 43:2454–2464

    Google Scholar 

  • Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci U S A 112:6110–6115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon CD, Molnar P, Antonelli A, Crawford AJ, Montes C, Vallejo-Pareja MC (2016) Quaternary glaciation and the Great American biotic interchange. Geology 44:375–378

    Google Scholar 

  • Bacon CD, Moraes RM, Jaramillo C, Antonelli A (2017) Endemic palm species shed light on habitat shifts and the assembly of the Cerrado and Restinga floras. Mol Phylogenet Evol 110:127–133

    PubMed  Google Scholar 

  • Banda K, Delgado-Salinas A, Dexter KG, Linares-Palomino R, Oliveira-Filho A, Prado D, Pullan M, Quintana C, Riina R, Rodriguez M GM, Weintritt J, Acevedo-Rodriguez P, Adarve J, Alvarez E, Aranguren BA, Arteaga JC, Aymard G, Castano A, Ceballos-Mago N et al (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1387

    Google Scholar 

  • Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. Bot Rev 73:31–50

    Google Scholar 

  • Batalha MA, Silva IA, Cianciaruso MV, De Carvalho GH (2011) Trait diversity on the phylogeny of cerrado woody species. Oikos 120:1741–1751

    Google Scholar 

  • Beati L, Nava S, Burkman EJ, Barros-Battesti DM, Labruna MB, Guglielmone AA, Cáceres AG, Guzmán-Cornejo CM, León R, Durden LA, Faccini JLH (2013) Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evol Biol 13:267

    PubMed  PubMed Central  Google Scholar 

  • Beerling DJ, Osborne CP (2006) The origin of the savanna biome. Glob Chang Biol 12:2023–2031

    Google Scholar 

  • Bellosi E (2010) Loessic and fluvial sedimentation in Sarmiento formation pyroclastics, middle Cenozoic of central Patagonia. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of Gran Barranca. Cambridge University Press, Cambridge, pp 278–292

    Google Scholar 

  • Bellosi ES, Krause JM (2013) Onset of the Middle Eocene global cooling and expansion of open-vegetation habitats in central Patagonia. Andean Geol 1:29–48

    Google Scholar 

  • Boer B, van de Wal RSW, Bintanja R, Lourens LJ, Tuenter E (2010) Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records. Ann Glaciol 51:23–33

    Google Scholar 

  • Bond WJ (2005) Large parts of the world are brown or black: a different view on the “Green World” hypothesis. J Veg Sci 16:261–266

    Google Scholar 

  • Bond WJ, Midgley GF (2012) Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos Trans R Soc Lond B Biol Sci 367:601–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourlière F (1983) Ecosystems of the world. In: Goodall DW (ed) Tropical savannas, vol 13. Elsevier, Amsterdam, pp 1–730

    Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD (2007) Results of PMIP2 coupled simulations of the mid-Holocene and last glacial maximum—part 1: experiments and large-scale features. Clim Past 3:261–277

    Google Scholar 

  • Bradshaw CD, Lunt DJ, Flecker R, Davies-Barnard T (2015) Disentangling the roles of late Miocene palaeogeography and vegetation—implications for climate sensitivity. Palaeogeogr Palaeoclimatol Palaeoecol 417:17–34

    Google Scholar 

  • Bragg FJ, Lunt DJ, Haywood AM (2012) Mid-Pliocene climate modelled using the UK Hadley Centre Model: PlioMIP experiments 1 and 2. Geosci Model Dev 5:1109–1125

    Google Scholar 

  • Brown KS, Gifford DC (2002) Lepidoptera in the Cerrado landscape and the conservation of vegetation, soil, and topographical mosaics. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savana. Columbia University Press, New York, pp 201–222

    Google Scholar 

  • Bueno ML, Dexter KG, Pennington RT, Pontara V, Neves DM, Ratter JA, de Oliveira-Filho AT (2018) The environmental triangle of the Cerrado domain: ecological factors driving shifts in tree species composition between forests and savannas. J Ecol 106:2109–2120

    Google Scholar 

  • Burnham RJ, Johnson KR (2004) South American palaeobotany and the origins of neotropical rainforests. Philos Trans R Soc Lond B Biol Sci 359:1595–1610

    PubMed  PubMed Central  Google Scholar 

  • Bytebier B, Antonelli A, Bellstedt DU, Linder HP (2011) Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc R Soc B Biol Sci 278:188–195

    Google Scholar 

  • Bywater-Reyes S, Carrapa B, Clementz M, Schoenbohm L (2010) Effect of late Cenozoic aridification on sedimentation in the Eastern Cordillera of northwest Argentina (Angastaco basin). Geology 38:235–238

    CAS  Google Scholar 

  • Capurucho JMG, Ashley MV, Ribas CC, Bates JM (2018) Connecting Amazonian, Cerrado, and Atlantic Forest histories: Paraphyly, old divergences, and modern population dynamics in tyrant-manakins (Neopelma/Tyranneutes, Aves: Pipridae). Mol Phylogenet Evol 127:696–705

    PubMed  Google Scholar 

  • Carr AS, Armitage SJ, Berrio JC, Bilbao BA, Boom A (2015) An optical luminescence chronology for late Pleistocene aeolian activity in the Colombian and Venezuelan Llanos. Quat Res 85:299–312

    Google Scholar 

  • Carrillo JD, Amson E, Jaramillo C, Sánchez R, Quiroz L, Cuartas C, Rincón AF, Sánchez-Villagra MR (2018) The Neogene record of northern South American native ungulates. Smithson Contrib Paleobiol 101:1–67

    Google Scholar 

  • Chaves AV, Freitas GHS, Vasconcelos MF, Santos FR (2015) Biogeographic patterns, origin and speciation of the endemic birds from eastern Brazilian mountaintops: a review. Syst Biodivers 13:1–16

    Google Scholar 

  • Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine intertropical convergence zone. Clim Dyn 25:477–496

    Google Scholar 

  • Cole MM (1986) The savannas: biogeography and geobotany. Academic, London, pp 1–438

    Google Scholar 

  • Collevatti RG, Terribile LC, de Oliveira G, Lima-Ribeiro MS, Nabout JC, Rangel TF, Diniz-Filho JAF (2013) Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. J Biogeogr 40:345–358

    Google Scholar 

  • Colli GR, Fenker J, Tedeschi LG, Barreto-Lima AF, Mott T, Ribeiro SLB (2016) In the depths of obscurity: knowledge gaps and extinction risk of Brazilian worm lizards (Squamata, Amphisbaenidae). Biol Conserv 204:51–62

    Google Scholar 

  • Constantino R (2005) Padrões de diversidade e endemismo de térmitas no bioma Cerrado. In: Scariot A, Silva JCS, Felfili JM (eds) Cerrado Ecologia biodiversidade e Conservação. Ministério do Meio Ambient, Brasília, pp 319–333

    Google Scholar 

  • Corlett RT, Primack RB (2006) Tropical rainforests and the need for cross-continental comparisons. Trends Ecol Evol 21:104–110

    PubMed  Google Scholar 

  • Costa GC, Nogueira CC, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19:883–899

    Google Scholar 

  • Costa GC, Hampe A, Ledru MP, Martinez PA, Mazzochini GG, Shepard DB, Werneck FP, Moritz C, Carnaval AC (2017) Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Glob Ecol Biogeogr 27:285–297

    Google Scholar 

  • Cotton JM, Hyland EG, Sheldon ND (2014) Multi-proxy evidence for tectonic control on the expansion of C4 grasses in northwest Argentina. Earth Planet Sci Lett 395:41–50

    CAS  Google Scholar 

  • Couvreur TLP, Forest F, Baker WJ (2011) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol 1:1–144

    Google Scholar 

  • Crisp MD, Arroyo MT, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP (2009) Phylogenetic biome conservatism on a global scale. Nature 458:754–756

    CAS  PubMed  Google Scholar 

  • Daskin JH, Stalmans M, Pringle RM (2016) Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines. J Ecol 104:79–89

    Google Scholar 

  • Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of malpighiales supports a mid-cretaceous origin of modern tropical rain forests. Am Nat 165:E36–E65

    PubMed  Google Scholar 

  • de Souza ER, Lewis GP, Forest F, Schnadelbach AS, Berg CVD, de Queiroz LP (2013) Phylogeny of Calliandra (Leguminosae: Mimosoideae) based on nuclear and plastid molecular markers. Taxon 62:1200–1219

    Google Scholar 

  • Domingos FMCB, Bosque RJ, Cassimiro J, Colli GR, Rodrigues MT, Santos MG, Beheregaray LB (2014) Out of the deep: cryptic speciation in a Neotropical gecko (Squamata, Phyllodactylidae) revealed by species delimitation methods. Mol Phylogenet Evol 80:113–124

    PubMed  Google Scholar 

  • Donoghue MJ, Edwards EJ (2014) Biome shifts and niche evolution in plants. Annu Rev Ecol Evol Syst 45:547–572

    Google Scholar 

  • Dowsett H, Dolan A, Rowley D, Pound M, Salzmann U, Robinson M, Chandler M, Foley K, Haywood A (2016) The PRISM4 (mid-Piacenzian) palaeoenvironmental reconstruction. Clim Past Discuss 4:1–39

    Google Scholar 

  • Dunn RE, Strömberg CAE, Madden RH, Kohn MJ, Carlini AA (2015) Linked canopy, climate and faunal evolution in the Cenozoic of Patagonia. Science 347:258–261

    CAS  PubMed  Google Scholar 

  • Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, Bond WJ, Christin PA, Cousins AB, Duvall MR, Fox DL, Freckleton RP, Ghannoum O, Hartwell J, Huang Y, Janis CM, Keeley JE, Kellogg EA, Knapp AK, Leakey ADB, Nelson DM, Saarela JM, Sage RF, Sala OE, Salamin N, Still CJ, Tipple B (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591

    CAS  PubMed  Google Scholar 

  • Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38:201–341

    Google Scholar 

  • Faurby S, Svenning JC (2015) Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Divers Distrib 21:1155–1166

    Google Scholar 

  • Ferrari A, Barão KR, Bianchi FM, Campos LA, Grazia J (2015) Classification and biogeography of neotropical true bugs. In: Panizzi Antônio R, Jocélia G (eds) True bugs (Heteroptera) of the Neotropics. Springer, Dordrecht, pp 57–87

    Google Scholar 

  • Filgueiras T (2002) Herbaceous plant communities. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savana. Columbia University Press, New York, pp 121–139

    Google Scholar 

  • Fine PVA, Lohmann LG (2018) Importance of dispersal in the assembly of the Neotropical biota. Proc Natl Acad Sci U S A 115:201807012

    Google Scholar 

  • Flohn H (1981) A hemispheric circulation asymmetry during late Tertiary. Geol Rundsch 70:725–736

    Google Scholar 

  • Fonseca EM, Gehara M, Werneck FP, Lanna FM, Colli GR, Sites JW, Rodrigues MT, Garda AA (2018) Diversification with gene flow and niche divergence in a lizard species along the South American “diagonal of open formations”. J Biogeogr 45:1688–1700

    Google Scholar 

  • Fouquet A, Cassini SC, Haddad CFB, Pech N, Rodrigues MT (2014) Species delimitation, patterns of diversification and historical biogeography of the Neotropical frog genus Adenomera (Anura, Leptodactylidae). J Biogeogr 41:855–870

    Google Scholar 

  • Freitas C, Meerow AW, Pintaud JC, Henderson A, Noblick L, Costa FRC, Barbosa CE, Barrington D (2016) Phylogenetic analysis of Attalea (Arecaceae): insights into the historical biogeography of a recently diversified Neotropical plant group. Bot J Linn Soc 182:287–302

    Google Scholar 

  • Fritz SA, Schnitzler J, Eronen JT, Hof C, Böhning-Gaese K, Graham CH (2013) Diversity in time and space: wanted dead and alive. Trends Ecol Evol 28:509–516

    PubMed  Google Scholar 

  • Gamero MLD (1996) The changing course of the Orinoco river during the Neogene: a review. Palaeogeogr Palaeoclimatol Palaeoecol 123:385–402

    Google Scholar 

  • Gan MA, Kousky VE, Ropelewski CF (2004) The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J Clim 17:47–66

    Google Scholar 

  • Giugliano LG, Nogueira C, Valdujo PH, Collevatti RG, Colli GR (2013) Cryptic diversity in South American Teiinae (Squamata, Teiidae) lizards. Zool Scr 42:473–487

    Google Scholar 

  • Griffith DM, Lehmann CER, Strömberg CAE, Parr CL, Pennington RT, Sankaran M, Ratnam J, Still CJ, Powell RL, Hanan NP (2017) Comment on “The extent of forest in dryland biomes”. Science 358:27–30

    Google Scholar 

  • Guadanucci JPL (2011) Cladistic analysis and biogeography of the genus Oligoxystre Vellard 1924 (Araneae: Mygalomorphae: Theraphosidae). J Arachnol 39:320–326

    Google Scholar 

  • Guarnizo CE, Werneck FP, Giugliano LG, Santos MG, Fenker J, Sousa L, D’Angiolella AB, dos Santos AR, Strüssmann C, Rodrigues MT, Dorado-Rodrigues TF, Gamble T, Colli GR (2016) Cryptic lineages and diversification of an endemic anole lizard (Squamata, Dactyloidae) of the Cerrado hotspot. Mol Phylogenet Evol 94:279–289

    PubMed  Google Scholar 

  • Guedes TB, Sawaya RJ, Zizka A, Laffan S, Faurby S, Pyron RA, Bernils RS, Jansen M, Passos P, Prudente ALC et al (2018) Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. Glob Ecol Biogeogr 27:14–21

    PubMed  Google Scholar 

  • Hambalek N (1993) Palinoestratigrafia del Mioceno-Pliocene de la región de Urumaco, Falcon Noroccidental. Universidad Central de Venezuela, Caracas

    Google Scholar 

  • Hambalek N, Rull V, Digiacomo E, Gamero MLD (1994) Evolución paleoecológica y paleoambiental de la secuencia del Neógeno en el surco de Urumaco. Estudio palinológico y litológico. Bol Soc Venez Geol 191:7–19

    Google Scholar 

  • Henrot AJ, Utescher T, Erdei B, Dury M, Hamon N, Ramstein G, Krapp M, Herold N, Goldner A, Favre E, Munhoven G, François L (2017) Middle Miocene climate and vegetation models and their validation with proxy data. Palaeogeogr Palaeoclimatol Palaeoecol 467:95–119

    Google Scholar 

  • Herbert TD, Lawrence KT, Tzanova A, Peterson LC, Caballero-Gill R, Kelly CS (2016) Late Miocene global cooling and the rise of modern ecosystems. Nat Geosci 9:843–847

    CAS  Google Scholar 

  • Higgins SI, Scheiter S (2012) Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488:209–212

    CAS  PubMed  Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235

    CAS  PubMed  Google Scholar 

  • Huber O, de Stefano RD, Aymard G, Riina R (2006) Flora and vegetation of the Venezuelan Llanos: a review. In: Ratter JA, Pennington RT (eds) Neotropical savannas and seasonally dry forests: plant diversity, biogeography, and conservation. CRC, Boca Raton, FL, pp 95–120

    Google Scholar 

  • Hynek SA, Passey BH, Prado JL, Brown FH, Cerling TE, Quade J (2012) Small mammal carbon isotope ecology across the Miocene–Pliocene boundary, northwestern Argentina. Earth Planet Sci Lett 321:177–188

    Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Mo Bot Gard 86:590–643

    Google Scholar 

  • Jaramillo C (2018) Evolution of the Isthmus of Panama: biological, paleoceanographic, and paleoclimatological implications. In: Hoorn C, Perrigo A, Antonelli A (eds) Mountains, climate and biodiversity. Wiley, Oxford, pp 323–338

    Google Scholar 

  • Jaramillo C, Cárdenas A (2013) Global warming and neotropical rainforests: a historical perspective. Annu Rev Earth Planet Sci 41:741–766

    CAS  Google Scholar 

  • Jaramillo C, Rueda M, Mora G (2006) Cenozoic plant diversity in the Neotropics. Science 311:1893–1896

    CAS  PubMed  Google Scholar 

  • Jaramillo C, Moreno F, Hendy AJW, Sánchez-Villagra MR, Marty D (2015) Preface: La Guajira, Colombia: a new window into the Cenozoic neotropical biodiversity and the Great American biotic interchange. Swiss J Palaeontol 134:1–4

    Google Scholar 

  • Jaramillo C, Montes C, Cardona A, Silvestro D, Antonelli A, Bacon C (2017a) Comment (1) on “Formation of the Isthmus of Panama” by O’Dea et al. Sci Adv 3:e1602321

    PubMed  PubMed Central  Google Scholar 

  • Jaramillo C, Romero I, D’Apolito C, Bayona G, Duarte E, Louwye S, Escobar J, Luque J, Carrillo-Briceno J, Zapata V, Mora A, Schouten S, Zavada M, Harrington G, Ortiz J, Wesselingh F (2017b) Miocene flooding events of Western Amazonia. Sci Adv 3:e1601693

    PubMed  PubMed Central  Google Scholar 

  • Kay RF, Madden RH, Cifelli RL, Flynn JJ (1997) Vertebrate paleontology in the Neotropics. The Miocene Fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Khobzi J (1981) Los campos de dunas del norte de Colombia y de los Llanos del Orinoco (Colombia y Venezuela). Rev CIAF 6:257–292

    Google Scholar 

  • Kleinert K, Strecker MR (2001) Climate change in response to orographic barrier uplift: paleosol and stable isotope evidence from the late Neogene Santa Maria basin, northwestern Argentina. Geol Soc Am Bull 113:728–742

    CAS  Google Scholar 

  • Kohn MJ, Strömberg CAE, Madden RH, Dunn RE, Evans S, Palacios A, Carlini AA (2015) Quasi-static Eocene-Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 435:24–37

    Google Scholar 

  • Kürschner WM, Kvaček Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci 105:449–453

    PubMed  Google Scholar 

  • Latorre C, Quade J, McIntosh WC (1997) The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas. Earth Planet Sci Lett 146:83–96

    CAS  Google Scholar 

  • Lehmann CE, Archibald SA, Hoffmann WA, Bond WJ (2011) Deciphering the distribution of the savanna biome. New Phytol 191:197–209

    PubMed  Google Scholar 

  • Lehmann CER, Anderson TM, Sankaran M, Higgins SI, Archibald S, Hoffmann WA, Hanan NP, Williams RJ, Fensham RJ, Felfili J, Hutley LB, Ratnam J, San Jose J, Montes R, Franklin D, Russell-Smith J, Ryan CM, Durigan G, Hiernaux P, Haidar R, Bowman D, Bond WJ (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–552

    CAS  PubMed  Google Scholar 

  • Leite YLR, Kok PJR, Weksler M (2015) Evolutionary affinities of the “Lost World” mouse suggest a late Pliocene connection between the Guiana and Brazilian shields. J Biogeogr 42:706–715

    Google Scholar 

  • Liebmann B, Mechoso CR (2011) The South American monsoon system. In: Chang CP, Ding Y, Lau NC, Johnson RH, Wang B, Yasunari T (eds) The global monsoon system: research and forecast. World Scientific Publishing, New Jersey, pp 137–157

    Google Scholar 

  • Lohmann LG, Bell CD, Calió MF, Winkworth RC (2012) Pattern and timing of biogeographical history in the Neotropical tribe Bignonieae (Bignoniaceae). Bot J Linn Soc 171:154–170

    Google Scholar 

  • Lopes LE, Gonzaga LP (2013) Taxonomy, natural history, and conservation of Paroaria baeri (Aves: Thraupidae). Trop Zool 26:87–103

    Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382

    PubMed  Google Scholar 

  • Macedo RHF (2002) The avifauna: ecology, biogeography, and behavior. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savana. Columbia University Press, New York, pp 242–265

    Google Scholar 

  • MacFadden BJ (2006) Extinct mammalian biodiversity of the ancient New World tropics. Trends Ecol Evol 21:157–165

    PubMed  Google Scholar 

  • Machado T, Silva VX, Silva MJJ (2013) Phylogenetic relationships within Bothrops neuwiedi group (Serpentes, Squamata): geographically highly-structured lineages, evidence of introgressive hybridization and Neogene/Quaternary diversification. Mol Phylogenet Evol 71:1–14

    PubMed  Google Scholar 

  • Maciel NM, Collevatti RG, Colli GR, Schwartz EF (2010) Late Miocene diversification and phylogenetic relationships of the huge toads in the Rhinella marina (Linnaeus, 1758) species group (Anura: Bufonidae). Mol Phylogenet Evol 57:787–797

    PubMed  Google Scholar 

  • Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front Genet 4:1–7

    Google Scholar 

  • Marinho-Filho J, Rodrigues FHG, Juarez KM (2002) The Cerrado mammals: diversity, ecology, and natural history. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savana. Columbia University Press, New York, pp 266–284

    Google Scholar 

  • Matos-Maraví P, Peña C, Willmott KR, Freitas AVL, Wahlberg N (2013) Systematics and evolutionary history of butterflies in the “Taygetis clade” (Nymphalidae: Satyrinae: Euptychiina): towards a better understanding of Neotropical biogeography. Mol Phylogenet Evol 66:54–68

    PubMed  Google Scholar 

  • Matzke NJ, Wright A (2016) Inferring node dates from tip dates in fossil Canidae: the importance of tree priors. Biol Lett 12:1–4

    Google Scholar 

  • Mazzoni MM (1979) Contribución al conocimiento petrográfico de la Formación Sarmiento, barranca sur del lago Colhue Huapi, provincia de Chubut. Rev Asoc Argent Mineral Petrol Sedimentol 10:33–54

    Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New York

    Google Scholar 

  • McPherson K, Williams K (1998) Fire resistance of cabbage palms (Sabal palmetto) in the southeastern USA. For Ecol Manag 109:197–207

    Google Scholar 

  • Moncrieff GR, Bond WJ, Higgins SI (2016) Revising the biome concept for understanding and predicting global change impacts. J Biogeogr 43:863–873

    Google Scholar 

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114

    CAS  PubMed  Google Scholar 

  • Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the Central American Seaway. Science 348:226–229

    CAS  PubMed  Google Scholar 

  • Morales PR (1979) Estudio de los médanos de los Llanos Centrales de Venezuela: evidencias de un clima desértico. Acta Biol Venez 10:19–49

    Google Scholar 

  • Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribbean islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol 51:467–494

    CAS  PubMed  Google Scholar 

  • Morrone JJ (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:1–110

    PubMed  Google Scholar 

  • Morrone JJ (2017) Neotropical biogeography: regionalization and evolution. CRC/Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S (2011) Recent synchronous radiation of a living fossil. Science 334:796–799

    CAS  PubMed  Google Scholar 

  • Neves DM et al (2018) Lack of floristic identity in campos rupestres—a hyperdiverse mosaic of rocky montane savannas in South America. Flora 238:24–31

    Google Scholar 

  • Nogueira C, Ribeiro S, Costa GC, Colli GR (2011) Vicariance and endemism in a Neotropical savanna hotspot: distribution patterns of Cerrado squamate reptiles. J Biogeogr 38:1907–1922

    Google Scholar 

  • Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and wood flora of the Cerrado biome. In: The cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New York, pp 91–120

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938

    Google Scholar 

  • Osborne CP, Beerling DJ (2006) Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Philos Trans R Soc Lond B Biol Sci 361:173–194

    PubMed  Google Scholar 

  • Palazzesi L, Barreda V (2012) Fossil pollen records reveal a late rise of open-habitat ecosystems in Patagonia. Nat Commun 3:1294

    PubMed  Google Scholar 

  • Pardiñas UFJ, Lessa G, Teta P, Salazar-Bravo J, Câmara EMVC (2014) A new genus of sigmodontine rodent from eastern Brazil and the origin of the tribe Phyllotini. J Mammal 95:201–215

    Google Scholar 

  • Pavan SE, Jansa SA, Voss RS (2016) Spatiotemporal diversification of a low-vagility Neotropical vertebrate clade (short-tailed opossums, Didelphidae: Monodelphis). J Biogeogr 43:1299–1309

    Google Scholar 

  • Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27:261–273

    Google Scholar 

  • Pennington RT, Lavin M, Prado DE, Pendry CA, Pell SK, Butterworth CA (2004) Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both tertiary and quaternary diversification. Philos Trans R Soc Lond B Biol Sci 1443:515–537

    Google Scholar 

  • Pennington RT, Richardson JE, Lavin M (2006a) Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytol 172:605–616

    PubMed  Google Scholar 

  • Pennington TR, Lewis GP, Ratter JA (2006b) Neotropical savannas and seasonally dry forests: plant diversity, biogeography, and conservation. CRC, London

    Google Scholar 

  • Peres EA, Silva MJ, Solferini VN (2017) Phylogeography of the spider Araneus venatrix (Araneidae) suggests past connections between Amazon and Atlantic rainforests. Biol J Linn Soc 121:771–785

    Google Scholar 

  • Pérez ME, Vallejo-Pareja MC, Carrillo JD, Jaramillo C (2017) A new Pliocene Capybara (Rodentia, Caviidae) from northern South America (Guajira, Colombia), and its implications for the Great American biotic interchange. J Mamm Evol 24:111–125

    Google Scholar 

  • Pocco ME, Guzmán N, Plischuk S, Confalonieri V, Lange CE, Cigliano MM (2018) Diversification patterns of the grasshopper genus Zoniopoda Stål (Romaleidae, Acridoidea, Orthoptera) in open vegetation biomes of South America. Syst Entomol 43:290–307

    Google Scholar 

  • Pound MJ, Salzmann U (2017) Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition. Sci Rep 7:1–12

    Google Scholar 

  • Pound MJ, Haywood AM, Salzmann U, Riding JB, Lunt DJ, Hunter SJ (2011) A Tortonian (Late Miocene, 11.61–7.25Ma) global vegetation reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 300:29–45

    Google Scholar 

  • Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234:3–27

    Google Scholar 

  • Prado DE (1993) What is the Gran Chaco vegetation in South America? Candollea 145:29

    Google Scholar 

  • Price SL, Powell S, Kronauer DJC, Tran LAP, Pierce NE, Wayne RK (2014) Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J Evol Biol 27:242–258

    CAS  PubMed  Google Scholar 

  • Queiroz LP, Lavin M (2011) Coursetia (Leguminosae) from eastern Brazil: nuclear ribosomal and chloroplast DNA sequence analysis reveal the monophyly of three Caatinga-inhabiting species. Syst Bot 36:69–79

    Google Scholar 

  • Ratter JA, Askew GP, Montgomery RF, Gifford DR (1978) Observations on forests of some mesotrophic soils in Central Brazil (Observações sobre florestas de alguns solos mesotroficos no Brasil Central). Rev Bras Bot 1:47–58

    Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Google Scholar 

  • Rohrmann A, Sachse D, Mulch A, Pingel H, Tofelde S, Alonso RN, Strecker MR (2016) Miocene orographic uplift forces rapid hydrological change in the southern central Andes. Sci Rep 6:35678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675

    CAS  Google Scholar 

  • Royer DL (2010) Fossil soils constrain ancient climate sensitivity. Proc Natl Acad Sci U S A 107:517–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Royer DL, Pagani M, Beerling DJ (2011) Geologic constraints on earth system sensitivity to CO2 during the Cretaceous and early Paleogene. Earth Syst Dyn Discuss 2:1–30

    Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16

    Google Scholar 

  • Sánchez MV, Laza JH, Bellosi ES, Genise JF (2010) Ichnostratigraphy of middle Cenozoic Coprinisphaera from central Patagonia: insights into the evolution of dung beetles, herbivores and grass-dominated habitats. Palaeogeogr Palaeoclimatol Palaeoecol 297:633–648

    Google Scholar 

  • Sánchez-Villagra MR, Aguilera OA, Carlini AA (2010) Urumaco and Venezuelan Paleontology. In: Orangel A et al (eds) The fossil record of the northern Neotropics The fossil record of the northern Neotropics. Indiana University Press, Bloomington, IN, pp 192–213

    Google Scholar 

  • Särkinen T, Iganci JRV, Linares-Palomino R, Simon MF, Prado DE (2011) Forgotten forests—issues and prospects in biome mapping using seasonally dry tropical forests as a case study. BMC Ecol 11:1–15

    Google Scholar 

  • Sarmiento G (1984) The ecology of neotropical savannas. Harvard University Press, Cambridge

    Google Scholar 

  • Selkin PA, Strömberg CAE, Dunn RE, Kohn MJ, Carlini AA, Davies-Vollum KS, Madden RH (2015) Climate, dust, and fire across the Eocene-Oligocene transition, Patagonia. Geology G36664.1:1–4

    Google Scholar 

  • Sepulchre P, Sloan LC, Fluteau F (2010) Modelling the response of Amazonian climate to the uplift of the Andean mountain range. In: Hoorn MC, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past. Wiley-Blackwell, Oxford, pp 211–222

    Google Scholar 

  • Sepulchre P, Arsouze T, Donnadieu Y, Dutay JC, Jaramillo C, Le Bras J, Martin E, Montes C, Waite AJ (2014) Consequences of shoaling of the Central American Seaway determined from modeling Nd isotope. Paleoceanography 29:176–189

    Google Scholar 

  • Shackleton NJ, Backman J, Zimmerman H, Kent DV, Hall MA, Roberts DG, Schnitker D, Baldauf JG, Desprairies A, Homrighausen R, Huddlestun P, Keene JB, Kaltenback AJ, Krumsiek KAO, Morton AC, Murray JW, Westberg-Smith J (1984) Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620–623

    CAS  Google Scholar 

  • Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late Pleistocene. Science 310:1313–1317

    CAS  PubMed  Google Scholar 

  • Silva JMC (1997) Endemic bird species and conservation in the Cerrado Region, South America. Biodivers Conserv 6:435–450

    Google Scholar 

  • Da Silva JC, Bates J (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot. Bioscience 52:225–233

    Google Scholar 

  • Silveira FAO, Negreiros D, Barbosa NPU, Buisson E, Carmo FF, Carstensen DW, Conceição AA, Cornelissen TG, Echternacht L, Fernandes GW, Garcia QS, Guerra TJ, Jacobi CM, Lemos-Filho JP, Le Stradic S, Morellato LPC, Neves FS, Oliveira RS, Schaefer CE, Viana PL, Lambers H (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403:129–152

    CAS  Google Scholar 

  • Silvestro D, Tejedor MF, Serrano-Serrano ML, Loiseau O, Rossier V, Rolland J, Zizka A, Höhna S, Antonelli A, Salamin N (2018) Early arrival and climatically-linked geographic expansion of New World monkeys from tiny African ancestors. Syst Biol 68:78–92

    PubMed Central  Google Scholar 

  • Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. Int J Plant Sci 173:711–723

    Google Scholar 

  • Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci U S A 106:20359–20364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon MF, Pastore JFB, Souza AF, Borges LM, Scalon VR, Ribeiro PG, Santos-Silva J, Souza VC, Queiroz LP (2016) Molecular phylogeny of Stryphnodendron (Mimosoideae, Leguminosae) and generic delimitations in the Piptadenia group. Int J Plant Sci 177:41–59

    Google Scholar 

  • Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Pérez-Emán J, Burney CW, Xie X, Harvey MG, Faircloth BC, Glenn TC, Derryberry EP, Prejean J, Fields S, Brumfield RT (2014) The drivers of tropical speciation. Nature 515:406–409

    CAS  PubMed  Google Scholar 

  • Souza-Neto AC, Cianciaruso MV, Collevatti RG (2016) Habitat shifts shaping the diversity of a biodiversity hotspot through time: insights from the phylogenetic structure of Caesalpinioideae in the Brazilian Cerrado. J Biogeogr 43:340–350

    Google Scholar 

  • Spriggs EL, Christinb PA, Edwards EJ (2014) C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS One 9:e97722

    PubMed  PubMed Central  Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232

    CAS  PubMed  Google Scholar 

  • Stebbins GL (1981) Coevolution of grasses and herbivores. Ann Mo Bot Gard 68:75–86

    Google Scholar 

  • Strömberg CAE (2011) Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39:517–544

    Google Scholar 

  • Strömberg CAE, Stidham TA (2001) Dung beetle brood balls and notoungulate diet. J Vertebr Paleontol 21:105A

    Google Scholar 

  • Strömberg CAE, Dunn RE, Madden RH, Kohn MJ, Carlini AA (2013) Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat Commun 4:1478

    PubMed  Google Scholar 

  • Strömberg CAE, Dunn RE, Madden RH, Kohn MJ, Carlini AA (2014) Evolution of grazer morphologies in the absence of grasslands in southern South America. In: North American paleontological convention. The Paleontological Society Special Publications, Gainesville, FL, p 113

    Google Scholar 

  • Terra-Araujo MH, de Faria AD, Vicentini A, Nylinder S, Swenson U (2015) Species tree phylogeny and biogeography of the Neotropical genus Pradosia (Sapotaceae, Chrysophylloideae). Mol Phylogenet Evol 87:1–13

    PubMed  Google Scholar 

  • Thomé MTC, Zamudio KR, Giovanelli JGR, Haddad CFB, Baldissera FA Jr, Alexandrino J (2010) Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest. Mol Phylogenet Evol 55:1018–1031

    PubMed  Google Scholar 

  • Tripaldi A, Zarate M (2016) A review of Late Quaternary inland dune systems of South America east of the Andes. Quat Int 410:96–110

    Google Scholar 

  • Tripati AK, Roberts CD, Eagle RA (2009) Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326:1394

    CAS  PubMed  Google Scholar 

  • Valdujo PH, Silvano DL, Colli G, Martins M (2012) Anuran species composition and distribution patterns in Brazilian Cerrado, a Neotropical hotspot. S Am J Herpetol 7:63–78

    Google Scholar 

  • Wang X (1994) Phylogenetic systematics of the Hesperocyoninae (Carnivora, Canidae). Bull Am Mus Nat Hist 221:1–27

    Google Scholar 

  • Wang X, Tedford RH, Taylor BE (1999) Phylogenetic systematics of the Borophaginae (Carnivora, Canidae). Bull Am Mus Nat Hist 243:1–391

    Google Scholar 

  • Werneck FP (2011) The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quat Sci Rev 30:1630–1648

    Google Scholar 

  • Werneck FP, Giugliano LG, Collevatti RG, Colli GR (2009) Phylogeny, biogeography and evolution of clutch size in South American lizards of the genus Kentropyx (Squamata: Teiidae). Mol Ecol 18:262–278

    Google Scholar 

  • Wing SL, Herrera F, Jaramillo CA, Gomez-Navarro C, Wilf P, Labandeira CC (2009) Late Paleocene fossils from the Cerrejon formation, Colombia, are the earliest record of Neotropical rainforest. Proc Natl Acad Sci U S A 106:18627–18632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92

    CAS  PubMed  Google Scholar 

  • Zucol AF, Mazzoni MM, Madden RH (1999) Análisis fitolíticos en la secuencia sedimentaria de Gran Barranca, Chubut. In: Frenguelli J (ed) Primer Encuentro Argentino de Investigaciones Fitolíticas. Asociación de Ciencias Naturales del Litoral, Diamante, pp 11–12

    Google Scholar 

  • Zucol AF, Brea M, Bellosi E, Carlini AA, Vucetich MG (2007) Preliminary phytolith analysis of Sarmiento formation in the Gran Barranca (central Patagonia, Argentina). In: Madella M, Zurro D (eds) Plants, people and places. Recent studies in phytolith analysis. Oxbow Books, Oxford, pp 189–195

    Google Scholar 

  • Zucol AF, Brea M, Bellosi E (2010) Phytolith studies in Gran Barranca (central Patagonia, Argentina): the middle-late Eocene. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of Gran Barranca. Cambridge University Press, Cambridge, pp 317–340

    Google Scholar 

Download references

Acknowledgments

We thank Valentí Rull and Ana Carnaval for the invitation to contribute a chapter on this topic, an anonymous reviewer for the valuable comments on our manuscript, our research groups for valuable discussion, and S. Pineda-Muñoz for comments and discussion on ecometrics. Funding for this work was provided by the Swedish Research Council (B0569601), the Swedish Foundation for Strategic Research, the Biodiversity and Ecosystems in a Changing Climate (BECC) programme, and a Wallenberg Academy Fellowship to A.A.; continuous productivity grants from CNPq to R.G.C.; the Smithsonian Tropical Research Institute, the Anders Foundation, 1923 Fund and Gregory D. and Jennifer Walston Johnson to C.J.; FAPESP scholarship 2014/18837-7 and the State Univ. of Maranhão for the Senior Research fellowship to T.B.G.; the Swiss National Science Foundation fund P2ZHP3_174749 to J.D.C.; NSF EAR-1253713 and EAR-1349749 to C.A.E.S.; the Marie Skłodowska-Curie fellowship (project MARIPOSAS-704035) and the PPLZ programme of the Czech Academy of Sciences (grant L200961951) to P.M.M; Swedish Research Council (2017-04980) to C.D.B; Swedish Research Council (2017-03862) to S.F.; and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—99999.001292/2015-03) to J.A.R.A.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azevedo, J.A.R. et al. (2020). On the Young Savannas in the Land of Ancient Forests. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_12

Download citation

Publish with us

Policies and ethics