Shape and Texture Analysis of Radiomic Data for Computer-Assisted Diagnosis and Prognostication: An Overview

  • Francesco BianconiEmail author
  • Mario Luca Fravolini
  • Isabella Palumbo
  • Barbara Palumbo
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


There is increasing evidence that shape and texture descriptors from imaging data could be used as image biomarkers for computer-assisted diagnosis and prognostication in a number of clinical conditions. It is believed that such quantitative features may help uncover patterns that would otherwise go unnoticed to the human eye, this way offering significant advantages against traditional visual interpretation. The objective of this paper is to provide an overview of the steps involved in the process – from image acquisition to feature extraction and classification. A significant part of the work deals with the description of the most common texture and shape features used in the literature; overall issues, perspectives and directions for future research are also discussed.


Shape Texture Radiomics Computer-assisted medicine 



This work was partially supported by the Department of Engineering at the University of Perugia, Italy, under the Fundamental Research programme 2017.


  1. 1.
    Chalkidou, A., O’Doherty, M., Marsden, P.: False discovery rates in PET and CT studies with texture features: a systematic review. PLoS ONE 10(5), article no. e0124165 (2015)Google Scholar
  2. 2.
    Gillies, R., Kinahan, P., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016)CrossRefGoogle Scholar
  3. 3.
    Keek, S., Leijenaar, R., Jochems, A., Woodruff, H.: A review on radiomics and the future of theranostics for patient selection in precision medicine. Br. J. Radiol. 91(1091), article no. 20170926 (2018)Google Scholar
  4. 4.
    Wang, X., Sun, W., Liang, H., Mao, X., Lu, Z.: Radiomics signatures of computed tomography imaging for predicting risk categorization and clinical stage of thymomas. BioMed Res. Int. 2019, 10 (2019). article ID 3616852Google Scholar
  5. 5.
    Song, J., Liu, Z., Zhong, W., Huang, Y., Ma, Z., Dong, D., Liang, C., Tian, J.: Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis. Sci. Rep. 6, article no. 38282 (2016)Google Scholar
  6. 6.
    Pyka, T., Bundschuh, R., Andratschke, N., Mayer, B., Specht, H., Papp, L., Zsótér, N., Essler, M.: Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat. Oncol. 10(1), article no. 100 (2015)Google Scholar
  7. 7.
    Ravanelli, M., Farina, D., Morassi, M., Roca, E., Cavalleri, G., Tassi, G., Maroldi, R.: Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur. Radiol. 23(12), 3450–3455 (2013)CrossRefGoogle Scholar
  8. 8.
    Andersen, M., Harders, S., Ganeshan, B., Thygesen, J., Madsen, H., Rasmussen, F.: CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer. Acta Radiol. 57(6), 669–676 (2016)CrossRefGoogle Scholar
  9. 9.
    Dennie, C., Thornhill, R., Sethi-Virmani, V., Souza, C., Bayanati, H., Gupta, A., Maziak, D.: Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant. Imaging Med. Surg. 6(1), 6–15 (2016)Google Scholar
  10. 10.
    Kirienko, M., Cozzi, L., Rossi, A., Voulaz, E., Antunovic, L., Fogliata, A., Chiti, A., Sollini, M.: Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Eur. J. Nucl. Med. Mol. Imaging 45(10), 1649–1660 (2018)CrossRefGoogle Scholar
  11. 11.
    Zhu, X., Dong, D., Chen, Z., Fang, M., Zhang, L., Song, J., Yu, D., Zang, Y., Liu, Z., Shi, J., Tian, J.: Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Eur. Radiol. 28(7), 2772–2778 (2018)CrossRefGoogle Scholar
  12. 12.
    Hatt, M., Vallieres, M., Visvikis, D., Zwanenburg, A.: IBSI: an international community radiomics standardization initiative. J. Nucl. Med. 59(1 supp.), 287 (2018)Google Scholar
  13. 13.
    Barrie Smith, N., Webb, A.: Introduction to Medical Imaging: Physics, Engineering and Clinical Applications. Cambridge University Press, Cambridge (2011)Google Scholar
  14. 14.
    Goldman, L.: Principles of CT and CT technology. J. Nucl. Med. Technol. 35(3), 115–128 (2007)CrossRefGoogle Scholar
  15. 15.
    Basu, S., Kwee, T., Surti, S., Akin, E., Yoo, D., Alavi, A.: Fundamentals of PET and PET/CT imaging. Ann. N. Y. Acad. Sci. 1228(1), 1–18 (2011)Google Scholar
  16. 16.
    Grover, V., Tognarelli, J., Crossey, M., Cox, I., Taylor-Robinson, S., McPhail, M.: Magnetic resonance imaging: principles and techniques: lessons for clinicians. J. Clin. Exp. Hepatol. 5(3), 246–255 (2015)CrossRefGoogle Scholar
  17. 17.
    Bagher-Ebadian, H., Siddiqui, F., Liu, C., Movsas, B., Chetty, I.: On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med. Phys. 44(5), 1755–1770 (2017)CrossRefGoogle Scholar
  18. 18.
    Fave, X., Zhang, L., Yang, J., Mackin, D., Balter, P., Gomez, D., Followill, D., Jones, A., Stingo, F., Court, L.: Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl. Cancer Res. 5(4), 349–363 (2016)CrossRefGoogle Scholar
  19. 19.
    Brunese, L., Greco, B., Setola, F., Lassandro, F., Guarracino, M., De Rimini, M., Piccolo, S., De Rosa, N., Muto, R., Bianco, A., Muto, P., Grassi, R., Rotondo, A.: Non-small cell lung cancer evaluated with quantitative contrast-enhanced CT and PET-CT: net enhancement and standardized uptake values are related to tumour size and histology. Med. Sci. Monit. 19(1), 95–101 (2013)CrossRefGoogle Scholar
  20. 20.
    Ganeshan, B., Goh, V., Mandeville, H., Ng, Q., Hoskin, P., Miles, K.: Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266(1), 326–336 (2013)Google Scholar
  21. 21.
    Bianconi, F., Fravolini, M., Bello-Cerezo, R., Minestrini, M., Scialpi, M., Palumbo, B.: Evaluation of shape and textural features from CT as prognostic biomarkers in non-small cell lung cancer. Anticancer Res. 38(4), 2155–2160 (2018)Google Scholar
  22. 22.
    Yip, S., McCall, K., Aristophanous, M., Chen, A., Aerts, H., Berbeco, R.: Comparison of texture features derived from static and respiratory-gated PET images in non-small cell lung cancer. PLoS ONE 9(12), article no. e115510 (2014)Google Scholar
  23. 23.
    Zheng, L., Lei, Y.: A review of image segmentation methods for lung nodule detection based on computed tomography images. In: Proceedings of the 2nd International Conference on Electronic Information Technology and Computer Engineering. MATEC Web of Conferences, Shanghai, China, vol. 232, October 2018. art. no. 02001Google Scholar
  24. 24.
    Jayanthi, M.: Comparative study of different techniques used for medical image segmentation of liver from abdominal CT scan. In: Proceedings of the 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, pp. 1462–1465, March 2016. art. no. 7566379Google Scholar
  25. 25.
    Sandor, T., Metcalf, D., Kim, Y.J.: Segmentation of brain CT images using the concept of region growing. Int. J. Biomed. Comput. 29(2), 133–147 (1991)CrossRefGoogle Scholar
  26. 26.
    Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: DRINet for medical image segmentation. IEEE Trans. Med. Imaging 37(11), 2453–2462 (2018). art. no. 8357580Google Scholar
  27. 27.
    Chlebus, G., Schenk, A., Moltz, J., van Ginneken, B., Hahn, H., Meine, H.: Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Sci. Rep. 8(1), article no. 15497 (2018)Google Scholar
  28. 28.
    Vial, A., Stirling, D., Field, M., Ros, M., Ritz, C., Carolan, M., Holloway, L., Miller, A.: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. Transl. Cancer Res. 7(3), 803–816 (2018)CrossRefGoogle Scholar
  29. 29.
    Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  30. 30.
    Xie, D., Zhang, L., Bai, L.: Deep learning in visual computing and signal processing. Appl. Comput. Intell. Soft Comput., article no. 1320780, February 2017Google Scholar
  31. 31.
    Cuocolo, R., Stanzione, A., Ponsiglione, A., Romeo, V., Verde, F., Creta, M., La Rocca, R., Longo, N., Pace, L., Imbriaco, M.: Clinically significant prostate cancer detection on MRI: a radiomic shape features study. Eur. J. Radiol. 116, 144–149 (2019)CrossRefGoogle Scholar
  32. 32.
    Hatt, M., Laurent, B., Fayad, H., Jaouen, V., Visvikis, D., Le Rest, C.: Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method. Eur. J. Nucl. Med. Mol. Imaging 45(4), 630–641 (2018)CrossRefGoogle Scholar
  33. 33.
    Limkin, E., Reuzé, S., Carré, A., Sun, R., Schernberg, A., Alexis, A., Deutsch, E., Ferté, C., Robert, C.: The complexity of tumor shape, spiculatedness, correlates with tumor radiomic shape features. Sci. Rep. 9(1), article no. 4329, (2019)Google Scholar
  34. 34.
    Wang, J., Liu, X., Dong, D., Song, J., Xu, M., Zang, Y., Tian, J.: Prediction of malignant and benign of lung tumor using a quantitative radiomic method. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Orlando, United States, pp. 1272–1275, October 2016. art. no. 7590938Google Scholar
  35. 35.
    Newbold, P., Carlson, W., Thorne, B.: Statistics for Business and Economics, 6th edn. Pearson Education International (2007)Google Scholar
  36. 36.
    Bashir, U., Siddique, M., McLean, E., Goh, V., Cook, G.: Imaging heterogeneity in lung cancer: techniques, applications, and challenges. Am. J. Roentgenol. 207(3), 534–543 (2016)CrossRefGoogle Scholar
  37. 37.
    O’Connor, J., Rose, C., Waterton, J., Carano, R., Parker, G., Jackson, A.: Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin. Cancer Res. 21(2), 249–257 (2015)CrossRefGoogle Scholar
  38. 38.
    Win, T., Miles, K., Janes, S., Ganeshan, B., Shastry, M., Endozo, R., Meagher, M., Shortman, R., Wan, S., Kayani, I., Ell, P., Groves, A.: Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin. Cancer Res. 19(13), 3591–3599 (2013)CrossRefGoogle Scholar
  39. 39.
    Ganeshan, B., Panayiotou, E., Burnand, K., Dizdarevic, S., Miles, K.: Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur. Radiol. 22(4), 796–802 (2012)CrossRefGoogle Scholar
  40. 40.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  41. 41.
    Ben Othmen, E., Sayadi, M., Fniaech, F.: 3D gray level co-occurrence matrices for volumetric texture classification. In: Proceedings of the 3rd International Conference on Systems and Control (ICSC), Algiers, Algeria, pp. 833–837, October 2013Google Scholar
  42. 42.
    Aerts, H., Velazquez, E., Leijenaar, R., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M., Leemans, C., Dekker, A., Quackenbush, J., Gillies, R., Lambin, P.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, article no. 4006 (2014)Google Scholar
  43. 43.
    Adamasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989)CrossRefGoogle Scholar
  44. 44.
    Galloway, M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)CrossRefGoogle Scholar
  45. 45.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  46. 46.
    Hawkins, S., Korecki, J., Balagurunathan, Y., Gu, Y., Kumar, V., Basu, S., Hall, L., Goldgof, D., Gatenby, R., Gillies, R.: Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access 2, 1418–1426 (2014). art. no. 6966732Google Scholar
  47. 47.
    Laws, K.: Rapid texture identification. In: Wiener, T. (ed.) Image Processing for Missile Guidance. SPIE Proceedings, vol. 0238 (1980)Google Scholar
  48. 48.
    Balagurunathan, Y., Gu, Y., Wang, H., Kumar, V., Grove, O., Hawkins, S., Kim, J., Goldgof, D., Hall, L., Gatenby, R., Gillies, R.: Reproducibility and prognosis of quantitative features extracted from CT images. Transl. Oncol. 7(1), 72–87 (2014)CrossRefGoogle Scholar
  49. 49.
    Daubechies, I.: CBMS-NSF Regional Conference Series in Applied Mathematics, Ten Lectures on Wavelets, vol. 61. Society for Industrial and Applied Mathematics (1992)Google Scholar
  50. 50.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, Burlington (2006)Google Scholar
  51. 51.
    Bianconi, F., Palumbo, I., Fravolini, M., Chiari, R., Minestrini, M., Brunese, L., Palumbo, B.: Texture analysis on [18F]FDG PET/CT in non-small-cell lung cancer: correlations between PET features, CT features, and histological types. Molecular Imaging and Biology (2019, in press)Google Scholar
  52. 52.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)zbMATHGoogle Scholar
  53. 53.
    The Cancer Imaging Archive (TCIA). Accessed 04 June 2019
  54. 54.
    Rizzo, S., Botta, F., Raimondi, S., Origgi, D., Fanciullo, C., Morganti, A., Bellomi, M.: Radiomics: the facts and the challenges of image analysis. Eur. Radiol. Exp. 2(1), 36 (2018)CrossRefGoogle Scholar
  55. 55.
    Feedback Medical Ltd: TexRAD (Texture + Radiology). Accessed 20 July 2019
  56. 56.
    Nioche, C., Orlhac, F., Boughdad, S., Reuze, S., Goya-Outi, J., Robert, C., Pellot-Barakat, C., Soussan, M., Frouin, F., Buvat, I.: LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 78(16), 4786–4789 (2018)CrossRefGoogle Scholar
  57. 57.
    van Griethuysenand, J., Fedorovand, A., Parmarand, C., Hosnyand, A., Vivek Narayanand, A., Beets-Tanand, R., Fillion-Robinand, J.C., Pieperand, S., Aerts, H.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–7 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Francesco Bianconi
    • 1
    Email author
  • Mario Luca Fravolini
    • 1
  • Isabella Palumbo
    • 2
  • Barbara Palumbo
    • 3
  1. 1.Department of EngineeringUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Section of Radiation Oncology, Department of Surgical and Biomedical SciencesUniversità degli Studi di PerugiaPerugiaItaly
  3. 3.Section of Nuclear Medicine and Health Physics, Department of Surgical and Biomedical SciencesUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations