Skip to main content

Shape and Texture Analysis of Radiomic Data for Computer-Assisted Diagnosis and Prognostication: An Overview

  • Conference paper
  • First Online:
Design Tools and Methods in Industrial Engineering (ADM 2019)

Abstract

There is increasing evidence that shape and texture descriptors from imaging data could be used as image biomarkers for computer-assisted diagnosis and prognostication in a number of clinical conditions. It is believed that such quantitative features may help uncover patterns that would otherwise go unnoticed to the human eye, this way offering significant advantages against traditional visual interpretation. The objective of this paper is to provide an overview of the steps involved in the process – from image acquisition to feature extraction and classification. A significant part of the work deals with the description of the most common texture and shape features used in the literature; overall issues, perspectives and directions for future research are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalkidou, A., O’Doherty, M., Marsden, P.: False discovery rates in PET and CT studies with texture features: a systematic review. PLoS ONE 10(5), article no. e0124165 (2015)

    Google Scholar 

  2. Gillies, R., Kinahan, P., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016)

    Article  Google Scholar 

  3. Keek, S., Leijenaar, R., Jochems, A., Woodruff, H.: A review on radiomics and the future of theranostics for patient selection in precision medicine. Br. J. Radiol. 91(1091), article no. 20170926 (2018)

    Google Scholar 

  4. Wang, X., Sun, W., Liang, H., Mao, X., Lu, Z.: Radiomics signatures of computed tomography imaging for predicting risk categorization and clinical stage of thymomas. BioMed Res. Int. 2019, 10 (2019). article ID 3616852

    Google Scholar 

  5. Song, J., Liu, Z., Zhong, W., Huang, Y., Ma, Z., Dong, D., Liang, C., Tian, J.: Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis. Sci. Rep. 6, article no. 38282 (2016)

    Google Scholar 

  6. Pyka, T., Bundschuh, R., Andratschke, N., Mayer, B., Specht, H., Papp, L., Zsótér, N., Essler, M.: Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat. Oncol. 10(1), article no. 100 (2015)

    Google Scholar 

  7. Ravanelli, M., Farina, D., Morassi, M., Roca, E., Cavalleri, G., Tassi, G., Maroldi, R.: Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur. Radiol. 23(12), 3450–3455 (2013)

    Article  Google Scholar 

  8. Andersen, M., Harders, S., Ganeshan, B., Thygesen, J., Madsen, H., Rasmussen, F.: CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer. Acta Radiol. 57(6), 669–676 (2016)

    Article  Google Scholar 

  9. Dennie, C., Thornhill, R., Sethi-Virmani, V., Souza, C., Bayanati, H., Gupta, A., Maziak, D.: Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant. Imaging Med. Surg. 6(1), 6–15 (2016)

    Google Scholar 

  10. Kirienko, M., Cozzi, L., Rossi, A., Voulaz, E., Antunovic, L., Fogliata, A., Chiti, A., Sollini, M.: Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Eur. J. Nucl. Med. Mol. Imaging 45(10), 1649–1660 (2018)

    Article  Google Scholar 

  11. Zhu, X., Dong, D., Chen, Z., Fang, M., Zhang, L., Song, J., Yu, D., Zang, Y., Liu, Z., Shi, J., Tian, J.: Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Eur. Radiol. 28(7), 2772–2778 (2018)

    Article  Google Scholar 

  12. Hatt, M., Vallieres, M., Visvikis, D., Zwanenburg, A.: IBSI: an international community radiomics standardization initiative. J. Nucl. Med. 59(1 supp.), 287 (2018)

    Google Scholar 

  13. Barrie Smith, N., Webb, A.: Introduction to Medical Imaging: Physics, Engineering and Clinical Applications. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  14. Goldman, L.: Principles of CT and CT technology. J. Nucl. Med. Technol. 35(3), 115–128 (2007)

    Article  Google Scholar 

  15. Basu, S., Kwee, T., Surti, S., Akin, E., Yoo, D., Alavi, A.: Fundamentals of PET and PET/CT imaging. Ann. N. Y. Acad. Sci. 1228(1), 1–18 (2011)

    Google Scholar 

  16. Grover, V., Tognarelli, J., Crossey, M., Cox, I., Taylor-Robinson, S., McPhail, M.: Magnetic resonance imaging: principles and techniques: lessons for clinicians. J. Clin. Exp. Hepatol. 5(3), 246–255 (2015)

    Article  Google Scholar 

  17. Bagher-Ebadian, H., Siddiqui, F., Liu, C., Movsas, B., Chetty, I.: On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med. Phys. 44(5), 1755–1770 (2017)

    Article  Google Scholar 

  18. Fave, X., Zhang, L., Yang, J., Mackin, D., Balter, P., Gomez, D., Followill, D., Jones, A., Stingo, F., Court, L.: Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl. Cancer Res. 5(4), 349–363 (2016)

    Article  Google Scholar 

  19. Brunese, L., Greco, B., Setola, F., Lassandro, F., Guarracino, M., De Rimini, M., Piccolo, S., De Rosa, N., Muto, R., Bianco, A., Muto, P., Grassi, R., Rotondo, A.: Non-small cell lung cancer evaluated with quantitative contrast-enhanced CT and PET-CT: net enhancement and standardized uptake values are related to tumour size and histology. Med. Sci. Monit. 19(1), 95–101 (2013)

    Article  Google Scholar 

  20. Ganeshan, B., Goh, V., Mandeville, H., Ng, Q., Hoskin, P., Miles, K.: Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266(1), 326–336 (2013)

    Google Scholar 

  21. Bianconi, F., Fravolini, M., Bello-Cerezo, R., Minestrini, M., Scialpi, M., Palumbo, B.: Evaluation of shape and textural features from CT as prognostic biomarkers in non-small cell lung cancer. Anticancer Res. 38(4), 2155–2160 (2018)

    Google Scholar 

  22. Yip, S., McCall, K., Aristophanous, M., Chen, A., Aerts, H., Berbeco, R.: Comparison of texture features derived from static and respiratory-gated PET images in non-small cell lung cancer. PLoS ONE 9(12), article no. e115510 (2014)

    Google Scholar 

  23. Zheng, L., Lei, Y.: A review of image segmentation methods for lung nodule detection based on computed tomography images. In: Proceedings of the 2nd International Conference on Electronic Information Technology and Computer Engineering. MATEC Web of Conferences, Shanghai, China, vol. 232, October 2018. art. no. 02001

    Google Scholar 

  24. Jayanthi, M.: Comparative study of different techniques used for medical image segmentation of liver from abdominal CT scan. In: Proceedings of the 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, pp. 1462–1465, March 2016. art. no. 7566379

    Google Scholar 

  25. Sandor, T., Metcalf, D., Kim, Y.J.: Segmentation of brain CT images using the concept of region growing. Int. J. Biomed. Comput. 29(2), 133–147 (1991)

    Article  Google Scholar 

  26. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: DRINet for medical image segmentation. IEEE Trans. Med. Imaging 37(11), 2453–2462 (2018). art. no. 8357580

    Google Scholar 

  27. Chlebus, G., Schenk, A., Moltz, J., van Ginneken, B., Hahn, H., Meine, H.: Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Sci. Rep. 8(1), article no. 15497 (2018)

    Google Scholar 

  28. Vial, A., Stirling, D., Field, M., Ros, M., Ritz, C., Carolan, M., Holloway, L., Miller, A.: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. Transl. Cancer Res. 7(3), 803–816 (2018)

    Article  Google Scholar 

  29. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  30. Xie, D., Zhang, L., Bai, L.: Deep learning in visual computing and signal processing. Appl. Comput. Intell. Soft Comput., article no. 1320780, February 2017

    Google Scholar 

  31. Cuocolo, R., Stanzione, A., Ponsiglione, A., Romeo, V., Verde, F., Creta, M., La Rocca, R., Longo, N., Pace, L., Imbriaco, M.: Clinically significant prostate cancer detection on MRI: a radiomic shape features study. Eur. J. Radiol. 116, 144–149 (2019)

    Article  Google Scholar 

  32. Hatt, M., Laurent, B., Fayad, H., Jaouen, V., Visvikis, D., Le Rest, C.: Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method. Eur. J. Nucl. Med. Mol. Imaging 45(4), 630–641 (2018)

    Article  Google Scholar 

  33. Limkin, E., Reuzé, S., Carré, A., Sun, R., Schernberg, A., Alexis, A., Deutsch, E., Ferté, C., Robert, C.: The complexity of tumor shape, spiculatedness, correlates with tumor radiomic shape features. Sci. Rep. 9(1), article no. 4329, (2019)

    Google Scholar 

  34. Wang, J., Liu, X., Dong, D., Song, J., Xu, M., Zang, Y., Tian, J.: Prediction of malignant and benign of lung tumor using a quantitative radiomic method. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Orlando, United States, pp. 1272–1275, October 2016. art. no. 7590938

    Google Scholar 

  35. Newbold, P., Carlson, W., Thorne, B.: Statistics for Business and Economics, 6th edn. Pearson Education International (2007)

    Google Scholar 

  36. Bashir, U., Siddique, M., McLean, E., Goh, V., Cook, G.: Imaging heterogeneity in lung cancer: techniques, applications, and challenges. Am. J. Roentgenol. 207(3), 534–543 (2016)

    Article  Google Scholar 

  37. O’Connor, J., Rose, C., Waterton, J., Carano, R., Parker, G., Jackson, A.: Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin. Cancer Res. 21(2), 249–257 (2015)

    Article  Google Scholar 

  38. Win, T., Miles, K., Janes, S., Ganeshan, B., Shastry, M., Endozo, R., Meagher, M., Shortman, R., Wan, S., Kayani, I., Ell, P., Groves, A.: Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin. Cancer Res. 19(13), 3591–3599 (2013)

    Article  Google Scholar 

  39. Ganeshan, B., Panayiotou, E., Burnand, K., Dizdarevic, S., Miles, K.: Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur. Radiol. 22(4), 796–802 (2012)

    Article  Google Scholar 

  40. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  41. Ben Othmen, E., Sayadi, M., Fniaech, F.: 3D gray level co-occurrence matrices for volumetric texture classification. In: Proceedings of the 3rd International Conference on Systems and Control (ICSC), Algiers, Algeria, pp. 833–837, October 2013

    Google Scholar 

  42. Aerts, H., Velazquez, E., Leijenaar, R., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M., Leemans, C., Dekker, A., Quackenbush, J., Gillies, R., Lambin, P.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, article no. 4006 (2014)

    Google Scholar 

  43. Adamasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989)

    Article  Google Scholar 

  44. Galloway, M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)

    Article  Google Scholar 

  45. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  46. Hawkins, S., Korecki, J., Balagurunathan, Y., Gu, Y., Kumar, V., Basu, S., Hall, L., Goldgof, D., Gatenby, R., Gillies, R.: Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access 2, 1418–1426 (2014). art. no. 6966732

    Google Scholar 

  47. Laws, K.: Rapid texture identification. In: Wiener, T. (ed.) Image Processing for Missile Guidance. SPIE Proceedings, vol. 0238 (1980)

    Google Scholar 

  48. Balagurunathan, Y., Gu, Y., Wang, H., Kumar, V., Grove, O., Hawkins, S., Kim, J., Goldgof, D., Hall, L., Gatenby, R., Gillies, R.: Reproducibility and prognosis of quantitative features extracted from CT images. Transl. Oncol. 7(1), 72–87 (2014)

    Article  Google Scholar 

  49. Daubechies, I.: CBMS-NSF Regional Conference Series in Applied Mathematics, Ten Lectures on Wavelets, vol. 61. Society for Industrial and Applied Mathematics (1992)

    Google Scholar 

  50. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, Burlington (2006)

    Google Scholar 

  51. Bianconi, F., Palumbo, I., Fravolini, M., Chiari, R., Minestrini, M., Brunese, L., Palumbo, B.: Texture analysis on [18F]FDG PET/CT in non-small-cell lung cancer: correlations between PET features, CT features, and histological types. Molecular Imaging and Biology (2019, in press)

    Google Scholar 

  52. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  53. The Cancer Imaging Archive (TCIA). http://www.cancerimagingarchive.net/. Accessed 04 June 2019

  54. Rizzo, S., Botta, F., Raimondi, S., Origgi, D., Fanciullo, C., Morganti, A., Bellomi, M.: Radiomics: the facts and the challenges of image analysis. Eur. Radiol. Exp. 2(1), 36 (2018)

    Article  Google Scholar 

  55. Feedback Medical Ltd: TexRAD (Texture + Radiology). https://fbkmed.com/texrad-landing-2/. Accessed 20 July 2019

  56. Nioche, C., Orlhac, F., Boughdad, S., Reuze, S., Goya-Outi, J., Robert, C., Pellot-Barakat, C., Soussan, M., Frouin, F., Buvat, I.: LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 78(16), 4786–4789 (2018)

    Article  Google Scholar 

  57. van Griethuysenand, J., Fedorovand, A., Parmarand, C., Hosnyand, A., Vivek Narayanand, A., Beets-Tanand, R., Fillion-Robinand, J.C., Pieperand, S., Aerts, H.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–7 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Department of Engineering at the University of Perugia, Italy, under the Fundamental Research programme 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bianconi .

Editor information

Editors and Affiliations

Appendix: Tools and Packages for Radiomics

Appendix: Tools and Packages for Radiomics

A number of applications are already available for managing radiomics data. Among them, TexRAD (Feedback Medical Ltd, Cambridge, UK) is a commercial tool enabling lesion segmentation, feature extraction and statistical interpretation over radiomic data [55]. LIFEx (IMIV/CEA, Orsay, France) is a freeware package allowing textural analysis and radiomic feature measurements from PET, CT, ultrasound and MR images [56]. Finally, Pyradiomics (Computational Imaging & Bioinformatics Lab, Harvard Medical School, Cambridge, USA) is an open-source set of python libraries for the extraction of radiomics data from medical images as well as image loading and preprocessing [57].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bianconi, F., Fravolini, M.L., Palumbo, I., Palumbo, B. (2020). Shape and Texture Analysis of Radiomic Data for Computer-Assisted Diagnosis and Prognostication: An Overview. In: Rizzi, C., Andrisano, A.O., Leali, F., Gherardini, F., Pini, F., Vergnano, A. (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31154-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31153-7

  • Online ISBN: 978-3-030-31154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics