Principal Component and Static Factor Analysis

Part of the Advanced Studies in Theoretical and Applied Econometrics book series (ASTA, volume 52)


Factor models are widely used in macroeconomic forecasting. With large datasets, factor models are particularly useful due to their intrinsic dimension reduction. In this chapter, we consider the forecasting problem using factor models, with special consideration to large datasets. In factor model estimation, we focus on principal component methods, and show how the estimated factors can be used to assist forecasting. Machine learning methods are discussed to encompass the high-dimensional features of large factor models. We consider policy evaluation as a nowcasting problem and show how factor analysis can be used to perform counter-factual outcome prediction in complicated models with observational data. The usage of all these techniques is illustrated by empirical examples.


  1. Back, A. D., & Weigend, A. S. (1997). A first application of independent component analysis to extracting structure from stock returns. International Journal of Neural Systems, 8(4), 473–484.CrossRefGoogle Scholar
  2. Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1), 135–171.CrossRefGoogle Scholar
  3. Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77(4), 1229–1279.CrossRefGoogle Scholar
  4. Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.CrossRefGoogle Scholar
  5. Bai, J., & Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. Econometrica, 74(4), 1133–1150.CrossRefGoogle Scholar
  6. Bai, J., & Ng, S. (2008). Forecasting economic time series using targeted predictors. Journal of Econometrics, 146(2), 304–317.CrossRefGoogle Scholar
  7. Bai, J., & Ng, S. (2009). Boosting diffusion indices. Journal of Applied Econometrics, 24(4), 607–629.CrossRefGoogle Scholar
  8. Bartlett, M. S., Movellan, J. R., & Sejnowski, T. J. (2002). Face recognition by independent component analysis. IEEE Transactions on Neural Networks, 13(6), 1450–1464.CrossRefGoogle Scholar
  9. Brown, G. D., Yamada, S., & Sejnowski, T. J. (2001). Independent component analysis at the neural cocktail party. Trends in Neurosciences, 24(1), 54–63.CrossRefGoogle Scholar
  10. Cai, T. T., Ma, Z., & Wu, Y. (2013). Sparse PCA: Optimal rates and adaptive estimation. The Annals of Statistics, 41(6), 3074–3110.CrossRefGoogle Scholar
  11. Chun, H., & Keleş, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(1), 3–25.CrossRefGoogle Scholar
  12. Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407–499.CrossRefGoogle Scholar
  13. Firpo, S., & Possebom, V. (2018). Synthetic control method: Inference, sensitivity analysis and confidence sets. Journal of Causal Inference, 6(2), 1–26.CrossRefGoogle Scholar
  14. Fuentes, J., Poncela, P., & Rodríguez, J. (2015). Sparse partial least squares in time series for macroeconomic forecasting. Journal of Applied Econometrics, 30(4), 576–595.CrossRefGoogle Scholar
  15. Gobillon, L., & Magnac, T. (2016). Regional policy evaluation: Interactive fixed effects and synthetic controls. Review of Economics and Statistics, 98(3), 535–551.CrossRefGoogle Scholar
  16. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Berlin: Springer.CrossRefGoogle Scholar
  17. Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The lasso and generalizations. London: Chapman and Hall/CRC.CrossRefGoogle Scholar
  18. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417–441.CrossRefGoogle Scholar
  19. Hsiao, C., Ching, H. S., & Wan, S. K. (2012). A panel data approach for program evaluation: Measuring the benefits of political and economic integration of Hong Kong with mainland China. Journal of Applied Econometrics, 27(5), 705–740.CrossRefGoogle Scholar
  20. Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.CrossRefGoogle Scholar
  21. Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.CrossRefGoogle Scholar
  22. Jolliffe, I. T. (2002). Principal component analysis. Berlin: Springer.Google Scholar
  23. Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.CrossRefGoogle Scholar
  24. Kim, D., & Oka, T. (2014). Divorce law reforms and divorce rates in the USA: An interactive fixed-effects approach. Journal of Applied Econometrics, 29(2), 231–245.CrossRefGoogle Scholar
  25. Kim, H. H., & Swanson, N. R. (2018). Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods. International Journal of Forecasting, 34(2), 339–354.CrossRefGoogle Scholar
  26. Li, H., Li, Q., & Shi, Y. (2017). Determining the number of factors when the number of factors can increase with sample size. Journal of Econometrics, 197(1), 76–86.CrossRefGoogle Scholar
  27. Muirhead, R. J. (2009). Aspects of multivariate statistical theory. Hoboken: Wiley.Google Scholar
  28. Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572.CrossRefGoogle Scholar
  29. Robbins, M. W., Saunders, J., & Kilmer B. (2017). A framework for synthetic control methods with high-dimensional, micro-level data: Evaluating a neighborhood-specific crime intervention. Journal of the American Statistical Association, 112(517), 109–126.CrossRefGoogle Scholar
  30. Stock, J. H., & Watson, M. W. (1999). Forecasting inflation. Journal of Monetary Economics, 44(2), 293–335.CrossRefGoogle Scholar
  31. Stock, J. H., & Watson, M. W. (2002a). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.CrossRefGoogle Scholar
  32. Stock, J. H., & Watson, M. W. (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2), 147–162.CrossRefGoogle Scholar
  33. Stock, J. H., & Watson, M. W. (2012). Generalized shrinkage methods for forecasting using many predictors. Journal of Business & Economic Statistics, 30(4), 481–493.CrossRefGoogle Scholar
  34. Stone, J. V. (2004). Independent component analysis: A tutorial introduction. Cambridge: MIT Press.CrossRefGoogle Scholar
  35. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 58(1), 267–288.Google Scholar
  36. Tong, L., Liu, R. W., Soon, V. C., & Huang, Y. F. (1991). Indeterminacy and identifiability of blind identification. IEEE Transactions on Circuits and Systems, 38(5), 499–509.CrossRefGoogle Scholar
  37. Xu, Y. (2017). Generalized synthetic control method: Causal inference with interactive fixed effects models. Political Analysis, 25(1), 57–76.CrossRefGoogle Scholar
  38. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301–320.CrossRefGoogle Scholar
  39. Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265–286.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Chicago Booth School of BusinessChicagoUSA
  2. 2.Scheller College of BusinessGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of EconomicsLondon School of EconomicsLondonUK

Personalised recommendations