Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs

  • Martin FeldkircherEmail author
  • Florian Huber
  • Michael Pfarrhofer
Part of the Advanced Studies in Theoretical and Applied Econometrics book series (ASTA, volume 52)


This chapter provides a thorough introduction to panel, global, and factor augmented vector autoregressive models. These models are typically used to capture interactions across units (i.e., countries) and variable types. Since including a large number of countries and/or variables increases the dimension of the models, all three approaches aim to decrease the dimensionality of the parameter space. After introducing each model, we briefly discuss key specification issues. A running toy example serves to highlight this point and outlines key differences across the different models. To illustrate the merits of the competing approaches, we perform a forecasting exercise and show that it pays off to introduce cross-sectional information in terms of forecasting key macroeconomic quantities.



The authors gratefully acknowledge financial support by the Austrian Science Fund (FWF): ZK 35-G.


  1. Aguilar, O., & West, M. (2000). Bayesian dynamic factor models and portfolio allocation. Journal of Business & Economic Statistics, 18(3), 338–357.Google Scholar
  2. Allenby, G. M., Arora, N., & Ginter, J. L. (1998). On the heterogeneity of demand. Journal of Marketing Research, 35(3), 384–389.CrossRefGoogle Scholar
  3. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58(2), 277–297.CrossRefGoogle Scholar
  4. Banerjee, A., Marcellino, M., & Masten, I. (2014). Forecasting with factor augmented error correction models. International Journal of Forecasting, 30(3), 589–612.CrossRefGoogle Scholar
  5. Bernanke, B. S., Boivin, J., & Eliasz, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics, 120(1), 387–422.Google Scholar
  6. Canova, F. (2007). Methods for applied macroeconomic research. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  7. Canova, F., & Ciccarelli, M. (2004). Forecasting and turning point predictions in a Bayesian panel VAR model. Journal of Econometrics, 120(2), 327–359.CrossRefGoogle Scholar
  8. Canova, F., & Ciccarelli, M. (2009). Estimating multicountry VAR models. International Economic Review, 50(3), 929–959.CrossRefGoogle Scholar
  9. Canova, F.,& Ciccarelli, M. (2013). Panel vector autoregressive models: A survey. In Var models in macroeconomics–new developments and applications: Essays in honor of Christopher A. Sims (pp. 205–246). Bingley, UK: Emerald Group Publishing Limited.Google Scholar
  10. Carriero, A., Clark, T. E., & Marcellino, M. (2016). Common drifting volatility in large Bayesian VARs. Journal of Business & Economic Statistics, 34(3), 375–390.CrossRefGoogle Scholar
  11. Carter, C. K., & Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81(3), 541–553.CrossRefGoogle Scholar
  12. Chudik, A., Grossman, V., & Pesaran, M. H. (2016). A multi-country approach to forecasting output growth using PMIs. Journal of Econometrics, 192(2), 349–365.CrossRefGoogle Scholar
  13. Crespo Cuaresma, J., Doppelhofer, G., Feldkircher, M., & Huber, F. (2019). Spillovers from US monetary policy: Evidence from a time varying parameter global vector autoregressive model. Journal of the Royal Statistical Society: Series A, 182, 831–861.CrossRefGoogle Scholar
  14. Crespo Cuaresma, J., Feldkircher, M., & Huber, F. (2016). Forecasting with global vector autoregressive models: A Bayesian approach. Journal of Applied Econometrics, 31(7), 1371–1391.CrossRefGoogle Scholar
  15. Dées, S., di Mauro, F., Pesaran, H., & Smith, L. (2007). Exploring the international linkages of the euro area: A global VAR analysis. Journal of Applied Econometrics, 22(1), 1–38.CrossRefGoogle Scholar
  16. Dées, S., & Güntner, J. (2017). Forecasting inflation across Euro area countries and sectors: A panel VAR approach. Journal of Forecasting, 36, 431–453.Google Scholar
  17. Dovern, J., Feldkircher, M., & Huber, F. (2016). Does joint modelling of the world economy pay off? Evaluating global forecasts from a Bayesian GVAR. Journal of Economic Dynamics and Control, 70, 86–100.CrossRefGoogle Scholar
  18. Eickmeier, S., Lemke, W., & Marcellino, M. (2015). A classical time varying FAVAR model: Estimation, forecasting, and structural analysis. European Economic Review, 74, 128–145.CrossRefGoogle Scholar
  19. Eickmeier, S., & Ng, T. (2015). How do US credit supply shocks propagate internationally? A GVAR approach. European Economic Review, 74, 128–145.CrossRefGoogle Scholar
  20. Eickmeier, S., & Ng, T. (2011). Forecasting national activity using lots of international predictors: An application to New Zealand. International Journal of Forecasting, 27(2), 496–511.CrossRefGoogle Scholar
  21. Feldkircher, M., & Huber, F. (2016). The international transmission of US shocks—evidence from Bayesian global vector autoregressions. European Economic Review, 81(100), 167–188.CrossRefGoogle Scholar
  22. Fischer, M., Huber, F., & Pfarrhofer, M. (2019). The regional transmission of uncertainty shocks on income inequality in the United States. Journal of Economic Behavior & Organization, forthcoming.Google Scholar
  23. Frühwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis, 15(2), 183–202.CrossRefGoogle Scholar
  24. Frühwirth-Schnatter, S., Tüchler, R., & Otter, T. (2004). Bayesian analysis of the heterogeneity model. Journal of Business & Economic Statistics, 22(1), 2–15.CrossRefGoogle Scholar
  25. George, E., & McCulloch, R. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88, 881–889.CrossRefGoogle Scholar
  26. George, E., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553–580.CrossRefGoogle Scholar
  27. Geweke, J., & Amisano, G. (2010). Comparing and evaluating Bayesian predictive distributions of asset returns. International Journal of Forecasting, 26(2), 216–230.CrossRefGoogle Scholar
  28. Greenwood-Nimmo, M., Nguyen, V. H., & Shin, Y. (2012). Probabilistic forecasting of output growth, inflation and the balance of trade in a GVAR framework. Journal of Applied Econometrics, 27, 554–573.CrossRefGoogle Scholar
  29. Griffin, J. E., & Brown, P. J. (2010). Inference with normal-gamma prior distributions in regression problems. Bayesian Analysis, 5(1), 171–188.CrossRefGoogle Scholar
  30. Hamilton, J. (1994). Time series analysis. Princeton, NJ: Princeton University Press.Google Scholar
  31. Han, F., & Ng, T. H. (2011). ASEAN-5 macroeconomic forecasting using a GVAR model. Asian Development Bank, Working Series on Regional Economic Integration, 76.Google Scholar
  32. Huber, F. (2016). Density forecasting using Bayesian global vector autoregressions with stochastic volatility. International Journal of Forecasting, 32(3), 818–837.CrossRefGoogle Scholar
  33. Huber, F., & Feldkircher, M. (2019). Adaptive Shrinkage in Bayesian Vector Autoregressive Models. Journal of Business & Economic Statistics, 37(1), 27–39.CrossRefGoogle Scholar
  34. Jacquier, E., Polson, N. G., & Rossi, P. E. (2002). Bayesian analysis of stochastic volatility models. Journal of Business & Economic Statistics, 20(1), 69–87.CrossRefGoogle Scholar
  35. Jarociński, M. (2010). Responses to monetary policy shocks in the east and the west of Europe: A comparison. Journal of Applied Econometrics, 25(5), 833–868.CrossRefGoogle Scholar
  36. Kastner, G. (2016). Dealing with stochastic volatility in time series using the R package stochvol. Journal of Statistical Software, 69(1), 1–30.Google Scholar
  37. Koop, G. (2003). Bayesian econometrics. London: Wiley.Google Scholar
  38. Koop, G., & Korobilis, D. (2016). Model uncertainty in panel vector autoregressive models. European Economic Review, 81, 115–131.CrossRefGoogle Scholar
  39. Koop, G., & Korobilis, D. (2019). Forecasting with high-dimensional panel VARs. Oxford Bulletin of Economics and Statistics, 81(5), 937–959.CrossRefGoogle Scholar
  40. Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions: Five years of experience. Journal of Business & Economic Statistics, 4(1), 25–38.Google Scholar
  41. McCracken, M. W., & Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research. Journal of Business & Economic Statistics, 34(4), 574–589.CrossRefGoogle Scholar
  42. Moench, E. (2008). Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach. Journal of Econometrics, 146(1), 26–43.CrossRefGoogle Scholar
  43. Pesaran, M., Schuermann, T., & Smith, L. (2009). Forecasting economic and financial variables with global VARs. International Journal of Forecasting, 25(4), 642–675.CrossRefGoogle Scholar
  44. Pesaran, M., Schuermann, T., & Weiner, S. (2004). Modeling regional interdependencies using a global error-correcting macroeconometric model. Journal of Business & Economic Statistics, 22(2), 129–162.CrossRefGoogle Scholar
  45. Stock, J. H., & Watson, M. W. (2016). Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics. In J. B. Taylor & H. Uhlig (Eds.), Handbook of Macroeconomics. Amsterdam: Elsevier.Google Scholar
  46. Wang, P., & Wen, Y. (2007). Inflation dynamics: A cross-country investigation. Journal of Monetary Economics, 54(7), 2004–2031.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Martin Feldkircher
    • 1
    Email author
  • Florian Huber
    • 2
  • Michael Pfarrhofer
    • 2
  1. 1.Oesterreichische Nationalbank (OeNB)ViennaAustria
  2. 2.Salzburg Centre of European Union Studies (SCEUS)University of SalzburgSalzburgAustria

Personalised recommendations