Skip to main content

Quantum Non-Markovian Collision Models from Colored-Noise Baths

  • Conference paper
  • First Online:
Advances in Open Systems and Fundamental Tests of Quantum Mechanics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 237))

  • 455 Accesses

Abstract

A quantum collision model (CM),  also known as repeated interactions model,  can be built from the standard microscopic framework where a system S is coupled to a white-noise bosonic bath under the rotating wave approximation, which typically results in Markovian dynamics. Here, we discuss how to generalize the CM construction to the case of frequency-dependent system–bath coupling, which defines a class of colored-noise baths. This leads to an intrinsically non-Markovian CM, where each ancilla (bath subunit) collides repeatedly with S at different steps. We discuss the illustrative example of an atom in front of a mirror in the regime of non-negligible retardation times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  2. A. Rivas, S.F. Huelga, Open Quantum Systems. An Introduction (Springer, Heidelberg, 2011)

    MATH  Google Scholar 

  3. J. Rau, Phys. Rev. 129, 1880 (1963)

    Google Scholar 

  4. V. Scarani M. Ziman, P. Stelmachovic, N. Gisin, V. Buzek, Phys. Rev. Lett. 88, 097905 (2002)

    Google Scholar 

  5. T.A. Brun, Am. J. Phys. 70, 719 (2002)

    Google Scholar 

  6. F. Ciccarello, S. Lorenzo, V. Giovannetti, G.M. Palma, in preparation (2019)

    Google Scholar 

  7. P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Phys. Rev. X 7, 021003 (2017)

    Google Scholar 

  8. I. de Vega, D. Alonso, Rev. Mod. Phys. 89, 15001 (2017)

    Google Scholar 

  9. N. Altamirano, P. Corona-Ugalde, R. Mann, M.A. Zych, New J. Phys. 19, 013035 (2017)

    Google Scholar 

  10. F. Ciccarello, Quantum Meas. Quantum Metrol. 4, 53 (2017)

    Google Scholar 

  11. A.L. Grimsmo, Phys. Rev. Lett. 115, 060402 (2015)

    Google Scholar 

  12. S.J. Whalen, A.L. Grimsmo, H.J. Carmichael, Quantum. Sci. Technol. 2, 044008 (2017)

    Google Scholar 

  13. H. Pichler, P. Zoller, Phys. Rev. Lett. 116, 093601 (2016)

    Google Scholar 

  14. K.A. Fischer, R. Trivedi, V. Ramasesh, I. Siddiqi, J. Vuckovic, Quantum 2, 69 (2018)

    Google Scholar 

  15. J.A. Gross, C.M. Caves, G.J. Milburn, J. Combes, Quantum Sci. Technol. 3, 024005 (2018)

    Google Scholar 

  16. K. Fischer, J. Phys. Commun 2, 091001 (2018)

    Google Scholar 

  17. C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, Berlin, 2004)

    MATH  Google Scholar 

  18. L. Diosi, Phys. Rev. A 85, 034101 (2012)

    Google Scholar 

  19. J. Zhang, Y.-X. Liu, R.-B. Wu, K. Jacobs, F. Nori, Phys. Rev. A 87, 032117 (2013)

    Google Scholar 

  20. A. Rivas, S.F. Huelga, M.B. Plenio, Rep. Prog. Phys. 77, 094001 (2014)

    Google Scholar 

  21. H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016)

    Google Scholar 

  22. More in detail, we require \(\Delta t\ll 1/\gamma \) [cf. Eq. (3)], which holds even for a white-noise bath (see Ref. [15] for a detailed discussion). Additionally, \(\Delta t\) must be far shorter than the characteristic time scale of function (10). In the instance in Section 6, this is the time delay \(\tau \)

    Google Scholar 

  23. The integral on the left-hand side of Eq. (16) is here viewed as a function of \(t^{\prime }\), which can be approximated by its coarse-grained version in the corresponding interval \([t_{m-1},t_{m}]\) [as done in Eqs. (12) and (13)]

    Google Scholar 

  24. In virtue of Eq. (11), the basic spirit of the calculation leading to Eq. (18) is to formally end up with integrals featuring only \(\hat{a}_{\rm in}(t)\) in the integrand

    Google Scholar 

  25. T. Rybar, S.N. Filippov, M. Ziman, V. Buzek, J. Phys. B 45, 154006 (2012); S.N. Filippov, J. Piilo, S. Maniscalco, M. Ziman, Phys. Rev. A 95, 32111 (2017)

    Google Scholar 

  26. B.Q. Baragiola, J. Combes, Phys. Rev. A 96, 023819 (2017)

    Google Scholar 

  27. A. Dabrowska, G. Sarbicki, D. Chruscinski, Phys. Rev. A 96, 053819 (2017)

    Google Scholar 

  28. Y.L.L. Fang, F. Ciccarello, H.U. Baranger, New J. Phys. 20, 043035 (2018)

    Google Scholar 

  29. D. Witthaut, A.S. Sorensen, New J. Phys. 12, 043052 (2010)

    Google Scholar 

  30. P.W. Milonni, P.L. Knight, Phys. Rev. A 10, 1096 (1974)

    Google Scholar 

  31. R.J. Cook, P.W. Milonni, Phys. Rev. A 35, 5081 (1987)

    Google Scholar 

  32. U. Dorner, P. Zoller, Phys. Rev. A 66, 023816 (2002)

    Google Scholar 

  33. T. Tufarelli, F. Ciccarello, M.S. Kim, Phys. Rev. A 87, 013820 (2013)

    Google Scholar 

  34. T. Tufarelli, M.S. Kim, F. Ciccarello, Phys. Rev. A 90, 012113 (2014); T. Tufarelli, M.S. Kim, F. Ciccarello, Phys. Scrip. T160, 014043 (2014)

    Google Scholar 

  35. S. Lorenzo, F. Ciccarello, G.M. Palma, Phys. Rev. A 93, 052111 (2016)

    Google Scholar 

  36. S. Kretschmer, K. Luoma, W.T. Strunz, Phys. Rev. A 94, 012106 (2016)

    Google Scholar 

  37. S. Lorenzo, F. Ciccarello, G.M. Palma, Phys. Rev. A 96, 032107 (2017)

    Google Scholar 

  38. S. Campbell, F. Ciccarello, G.M. Palma, B. Vacchini, Phys. Rev. A 98, 012142 (2018)

    Google Scholar 

  39. A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, A. Knorr, Phys. Rev. Lett. 110, 013601 (2013)

    Google Scholar 

  40. M. Laakso, M. Pletyukhov, Phys. Rev. Lett. 113, 183601 (2014)

    Google Scholar 

  41. T. Ramos, B. Vermersch, P. Hauke, H. Pichler, P. Zoller, Phys. Rev. A 93, 062104 (2016)

    Google Scholar 

  42. G. Tabak, H. Mabuchi, EPJ Quantum Technol. 3, 3 (2016)

    Google Scholar 

  43. P.-O. Guimond, M. Pletyukhov, H. Pichler, P. Zoller, Quantum Sci. Technol. 2, 044012 (2017)

    Google Scholar 

  44. H. Pichler, S. Choi, P. Zoller, M.D. Lukin, Proc. Natl. Acad. Sci. U.S.A. 114, 11362 (2017)

    Google Scholar 

  45. L. Guo, A. Grimsmo, A.F. Kockum, M. Pletyukhov, G. Johansson, Phys. Rev. A 95, 053821 (2017)

    Google Scholar 

  46. H. Chalabi, E. Waks, Phys. Rev. A 98, 063832 (2018)

    Google Scholar 

  47. N. Nemet, A. Carmele, S. Parkins, A. Knorr. arXiv:1902.08328

  48. Y.-L.L. Fang, Comput. Phys. Commun. 235, 422 (2019)

    Google Scholar 

  49. G. Calajó, Y.-L.L. Fang, H.U. Baranger, F. Ciccarello, Phys. Rev. Lett. 122, 073601 (2019)

    Google Scholar 

  50. G. Andersson, B. Suri, L. Guo, T. Aref, P. Delsing. https://doi.org/10.1038/s41567-019-0605-6

Download references

Acknowledgements

Fruitful discussions with Susana Huelga, Kimmo Luoma, Gonzalo Manzano, Salvatore Lorenzo, and Tommaso Tufarelli are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ciccarello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cilluffo, D., Ciccarello, F. (2019). Quantum Non-Markovian Collision Models from Colored-Noise Baths. In: Vacchini, B., Breuer, HP., Bassi, A. (eds) Advances in Open Systems and Fundamental Tests of Quantum Mechanics. Springer Proceedings in Physics, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-030-31146-9_3

Download citation

Publish with us

Policies and ethics