Skip to main content

Model-Driven Context Configuration in Business Process Management Systems: An Approach Based on Knowledge Graphs

Part of the Lecture Notes in Business Information Processing book series (LNBIP,volume 365)

Abstract

Business Process Management Systems (BPMSs) are inherently model-driven, relying on machine-readable process repositories that are typically standards-based. However, a requirement for semantic agility is emerging as knowledge-driven applications become less blueprint-oriented and more context-aware. The integration of process knowledge with contextual data can be subjected to this agility requirement – i.e., having the process modelling environment customised in terms of (expanding) its knowledge space and in terms of model-data interoperability. Such customisations may capture any of the enterprise perspectives proposed by the Zachman Framework (among which the How, Who and Where facets are in our particular focus) towards the benefit of establishing a hybrid knowledge-data fabric underlying flexible, context-driven BPMSs.

This paper presents a project-based technical solution, based on the interplay of semantic technology and agile modelling methods, for setting up a hybrid knowledge base derived from several heterogeneous sources: diagrammatic models, semantically lifted legacy data and open geospatial data, with reasoning rules on top of this conglomerate. Together, these sources cover the How, Who and Where facets of the Zachman Framework concepts in a Knowledge Graph that drives the front-end Task Management panel of a BPMS. The proposal advocates complementarity and integration of paradigms that rarely converge – i.e., knowledge representation, open data and process-aware information systems.

Keywords

  • Business process management system
  • Agile modelling method engineering
  • GeoSPARQL
  • Knowledge graphs
  • Semantic data fabric

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-31143-8_14
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-31143-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Open GeoSpatial Consortium, GeoSPARQL – the official page. http://www.opengeospatial.org/standards/geosparql. Accessed 29 Jan 2019

  2. Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8

    CrossRef  Google Scholar 

  3. OMiLAB, NEMO Summer School – the official page. http://nemo.omilab.org. Accessed 28 Jan 2019

  4. Nonaka, I., von Krogh, G.: Perspective—tacit knowledge and knowledge conversion: controversy and advancement in organizational knowledge creation theory. Organ. Sci. 20(3), 635–652 (2009)

    CrossRef  Google Scholar 

  5. Ambler, S.: Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process, 1st edn. Wiley, New Jersey (2002)

    Google Scholar 

  6. W3C, RDF - Semantic Web Standards. http://www.w3.org/RDF/. Accessed 14 Mar 2019

  7. Karagiannis, D., Buchmann, R.A, Walch, M.: How can diagrammatic conceptual modelling support knowledge management? In: Proceedings of the 25th European Conference on Information Systems (ECIS), AIS 2017, pp. 1568–1583 (2017)

    Google Scholar 

  8. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–292 (1987)

    CrossRef  Google Scholar 

  9. Karagiannis, D.: Conceptual modelling methods: the amme agile engineering approach. In: Silaghi, G.C., Buchmann, R.A., Boja, C. (eds.) IE 2016. LNBIP, vol. 273, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73459-0_1

    CrossRef  Google Scholar 

  10. Karagiannis, D., Buchmann, R.A.: A proposal for deploying hybrid knowledge bases: the ADOxx-to-GraphDB interoperability case. In: Proceedings of the 51st Hawaii Conference on System Sciences (HICSS), University of Hawaii, pp. 4055–4064 (2018)

    Google Scholar 

  11. BOC, AdoXX official website. https://www.adoxx.org/live/home. Accessed 30 Jan 2019

  12. Karagiannis, D., Mayr, H., Mylopoulos, J. (eds.): Domain-Specific Conceptual Modeling. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39417-6

    CrossRef  Google Scholar 

  13. Gonzalez-Perez, C., Henderson-Sellers, B.: A foundation for multi-level modelling. In: CEUR Workshop Proceedings, pp. 43–52 (2014)

    Google Scholar 

  14. Ontotext, GraphDB – the official website. http://graphdb.ontotext.com/. Accessed 29 Jan 2019

  15. Ontotext, OntoRefine – the official page. http://graphdb.ontotext.com/documentation/free/loading-data-using-ontorefine.html. Accessed 29 Jan 2019

  16. Buchmann, R., Cinpoeru, M., Harkai, A., Karagiannis, D.: Model-aware software engineering: a knowledge-based approach to model-driven software engineering. In: Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), pp. 233–240. SCITE Press (2018)

    Google Scholar 

  17. Cinpoeru, M.: Dereferencing service for navigating enterprise knowledge structures from diagrammatic representations. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 303, pp. 85–96. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69023-0_9

    CrossRef  Google Scholar 

  18. Karagiannis, D., Buchmann, R.: Linked open models: extending linked open data with conceptual model information. Inf. Syst. 56, 174–197 (2016)

    CrossRef  Google Scholar 

  19. Buchmann, R., Karagiannis, D.: Modelling mobile app requirements for semantic traceability. Requirements Eng. 22(1), 41–75 (2017)

    CrossRef  Google Scholar 

  20. Buchmann, R., Karagiannis, D.: Enriching linked data with semantics from domain-specific diagrammatic models. Bus. Inf. Syst. Eng. 58(5), 341–353 (2016)

    CrossRef  Google Scholar 

  21. Costabello, L., Villata, S., Rodriguez Rocha, O., Gandon, F.: Access control for HTTP operations on linked data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 185–199. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_13

    CrossRef  Google Scholar 

  22. Maier, R.: Knowledge Management Systems, 3rd edn. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71408-8

    CrossRef  Google Scholar 

  23. Loucopoulos, P., Kavakli, V.: Enterprise knowledge management and conceptual modelling. In: Goos, G., Hartmanis, J., van Leeuwen, J., Chen, P.P., Akoka, J., Kangassalu, H., Thalheim, B. (eds.) Conceptual Modeling. LNCS, vol. 1565, pp. 123–143. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48854-5_11

    CrossRef  Google Scholar 

  24. Frank, U.: Multi-perspective enterprise models as a conceptual foundation for knowledge management. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (HICSS). IEEE (2000)

    Google Scholar 

  25. Kingston, J., Macintosh, A.: Knowledge management through multi-perspective modelling: representing and distributing organizational memory. Knowl.-Based Syst. 13(2–3), 121–131 (2000)

    CrossRef  Google Scholar 

  26. Thomas, O., Fellmann, M.: Semantic process modeling – design and implementation of an ontology-based representation of business processes. Bus. Inf. Syst. Eng. 1(6), 438–451 (2009)

    CrossRef  Google Scholar 

  27. Smolnik, S., Teuteberg, F., Thomas, O.: Semantic Technologies for Business and Information Systems Engineering. IGI Global, Hershey (2012)

    CrossRef  Google Scholar 

  28. Corea, C., Delfmann, P.: Detecting compliance with business rules in ontology-based process modeling. In: Proceedings der 13. Internationalen Tagung Wirtschaftsinformatik (WI) 2017, pp. 226–240 (2017)

    Google Scholar 

  29. Fill, H.: SeMFIS: a flexible engineering platform for semantic annotations of conceptual models. Seman. Web 8(5), 747–763 (2017)

    CrossRef  Google Scholar 

  30. Kaindl, H., Hoch, R., Popp, R.: Semantic task specification in business process context. In: 11th International Conference on Research Challenges in Information Science (RCIS), pp. 286–291. IEEE (2017)

    Google Scholar 

  31. Frank, U.: Domain-specific modeling languages: requirements analysis and design guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36654-3_6

    CrossRef  Google Scholar 

  32. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit + a fully configurable multi-user and multi-tool CASE and CAME environment. In: Constantopoulos, P., Mylopoulos, J., Vassiliou, Y. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61292-0_1

    CrossRef  Google Scholar 

  33. Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific methodology construction. In: Cotterman, W.W., Senn, J.A. (eds.) Challenges and Strategies for Research in Systems Development, pp. 257–269. Wiley, Chichester (1992)

    Google Scholar 

  34. Hafsi, M., Assar, S.: What enterprise architecture can bring for digital transformation: an exploratory study. In: 2016 IEEE 18th Conference on Business Informatics (CBI), pp. 83–89. IEEE (2016)

    Google Scholar 

  35. Assar, S.: Model driven requirements engineering: mapping the field and beyond. In: 4th International Model-Driven Requirements Engineering Workshop (MoDRE), pp. 1–6. IEEE 2014)

    Google Scholar 

  36. Pastor, O.: A capability-driven development approach for requirements and business process modeling. In: Link, S., Trujillo, Juan C. (eds.) ER 2016. LNCS, vol. 9975, pp. 3–8. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47717-6_1

    CrossRef  Google Scholar 

  37. Henkel, M., Stratigaki, C., Stirna, J., Loucopoulos, P., Zorgios, Y., Migiakis, A.: Extending capabilities with context awareness. In: Krogstie, J., Mouratidis, H., Su, J. (eds.) CAiSE 2016. LNBIP, vol. 249, pp. 40–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39564-7_4

    CrossRef  Google Scholar 

Download references

Acknowledgment

This work was supported by the Romanian National Research Authority through UEFISCDI, under grant agreement PN-III-P2-2.1-PED-2016-1140. Technical aspects of the model-driven implementation are detailed in the master dissertation of M. Cinpoeru, A “Hybrid Knowledge”-based Approach to Business Process Management Systems, while the modeling tool engineering is covered in the dissertation of A. Harkai, Proof of Concept for a Technology-Specific Modelling Language, at University Babeș-Bolyai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Andrei Buchmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Cinpoeru, M., Ghiran, AM., Harkai, A., Buchmann, R.A., Karagiannis, D. (2019). Model-Driven Context Configuration in Business Process Management Systems: An Approach Based on Knowledge Graphs. In: Pańkowska, M., Sandkuhl, K. (eds) Perspectives in Business Informatics Research. BIR 2019. Lecture Notes in Business Information Processing, vol 365. Springer, Cham. https://doi.org/10.1007/978-3-030-31143-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31143-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31142-1

  • Online ISBN: 978-3-030-31143-8

  • eBook Packages: Computer ScienceComputer Science (R0)