Skip to main content

Big Data Analytics Concepts, Technologies Challenges, and Opportunities

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019 (AISI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1058))

  • 2552 Accesses

Abstract

The rapid observed increase in using the Internet led to the presence of huge amounts of data. Traditional data technologies, techniques, and even applications cannot cope with the new data’s volume, structure, and types of styles. Big data concepts come to assimilate this non-stop flooding. Big data analysis process used to jewel the useful data and exclude the other one which provides better results with minimum resource utilization, time, and cost. Feature selection principle is a traditional data dimension reduction technique, and big data analytics provided modern technologies and frameworks that feature selection can be integrated with them to provide better performance for the principle itself and help in preprocessing of big data on the other hand. The main objective of this paper is to survey the most recent research challenges for big data analysis and preprocessing processes. The analysis is carried out via acquiring data from resources, storing them, then filtered to pick up the useful ones and dismissing the unwanted ones then extracting information. Before analyzing data, it needs preparation to remove noise, fix incomplete data and put it in a suitable pattern. This is done in the preprocessing step by various models like data reduction, cleaning, normalization, preparation, integration, and transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ishikiriyama, C.S., Gomes, C.F.S.: Big data: a global overview. In: Emrouznejad, A., Charles, V. (eds.) Big Data for the Greater Good, pp. 35–50. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  2. Kaisler, S., Armour, F., Espinosa, J.A., Money, W.: Big data: issues and challenges moving forward. In: Proceedings Annual Hawaii International Conference on System Sciences, pp. 995–1004 (2013)

    Google Scholar 

  3. García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J.M., Herrera, F.: Big data preprocessing: methods and prospects. Big Data Anal. 1(1), 1–22 (2016)

    Article  Google Scholar 

  4. Oussous, A., Benjelloun, F.-Z., Lahcen, A.A., Belfkih, S.: Big data technologies: a survey. J. King Saud Univ. Comput. Inf. Sci. 30(4), 431–448 (2018)

    Google Scholar 

  5. Burmester, G., Ma, H., Steinmetz, D., Hartmannn, S.: Big data and data analytics in aviation. In: Durak, U., Becker, J., Hartmann, S., Voros, N. (eds.) Advances in Aeronautical Informatics. Springer International Publishing, Cham (2018)

    Google Scholar 

  6. Amini, S., Gerostathopoulos, I., Prehofer, C.: Big data analytics architecture for real-time traffic control. In: 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems MT-ITS 2017, pp. 710–715 (2017). Tum Llcm

    Google Scholar 

  7. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Ullah Khan, S.: The rise of big data on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

    Article  Google Scholar 

  8. Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and potential. Heal. Inf. Sci. Syst. 2, 3 (2014)

    Article  Google Scholar 

  9. Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., Herrera, F.: A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239, 39–57 (2017)

    Article  Google Scholar 

  10. Chen, M., Mao, S., Zhang, Y., Leung, V.C.M

    Google Scholar 

  11. Addo-Tenkorang, R., Helo, P.T.: Big data applications in operations/supply-chain management: a literature review. Comput. Ind. Eng. 101, 528–543 (2016)

    Article  Google Scholar 

  12. Miller, K.W., Michael, K.: Big data: new opportunities and new challenges [guest editors’ introduction]. Computer 46(6), 22–24 (2013)

    Article  Google Scholar 

  13. Muthulakshmi, P., Udhayapriya, S.: A survey on big data issues and challenges. Int. J. Comput. Sci. Eng. 6(6), 1238–1244 (2018)

    Google Scholar 

  14. Huda, M., et al.: Big data emerging technology: insights into innovative environment for online learning resources. Int. J. Emerg. Technol. Learn. 13(1), 23–36 (2018)

    Article  Google Scholar 

  15. Aggarwal, V.B., Bhatnagar, V., Mishra, D.K.: Big Data Analytics. Advances in Intelligent Systems and Computing, vol. 654. Springer, Cham (2015)

    Google Scholar 

  16. Maxwell, S.E., Kelley, K., Rausch, J.R.: Sample size planning for statistical power and accuracy in parameter estimation. Annu. Rev. Psychol. 59, 537–563 (2008)

    Article  Google Scholar 

  17. Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V.: Critical analysis of big data challenges and analytical methods. J. Bus. Res. 70, 263–286 (2017)

    Article  Google Scholar 

  18. Ramannavar, M., Sidnal, N.S.: A proposed contextual model for big data analysis using advanced analytics. Adv. Intell. Syst. Comput. 654, 329–339 (2018)

    Google Scholar 

  19. Vashisht, P., Gupta, V.: Big data analytics techniques: a survey. In: Proceedings 2015 International Conference Green Computing and Internet Things, ICGCIoT 2015, pp. 264–269 (2016)

    Google Scholar 

  20. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 35(2), 137–144 (2015)

    Article  Google Scholar 

  21. Wang, Y., Kung, L.A., Byrd, T.A.: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 126, 3–13 (2018)

    Article  Google Scholar 

  22. Dumka, A., Sah, A.: Smart ambulance system using concept of big data and internet of things. In: Dey, N., Ashour, A.S., Bhatt, C., Fong, S.J. (eds.) Healthcare Data Analytics and Management. Elsevier Inc., Amsterdam (2018)

    Google Scholar 

  23. Tiwari, S., Wee, H.M., Daryanto, Y.: Big data analytics in supply chain management between 2010 and 2016: insights to industries. Comput. Ind. Eng. 115, 319–330 (2018)

    Article  Google Scholar 

  24. Kumar, U., Gambhir, S.: Mobile agent based mapreduce framework for big data processing. Adv. Intell. Syst. Comput. 654, 391–402 (2018)

    Google Scholar 

  25. Taneja, R., Gaur, D.: Robust fuzzy Neuro system for big data analytics. Adv. Intell. Syst. Comput. 654, 543–552 (2018)

    Google Scholar 

  26. Ahmed, Z., Liang, B.T.: Systematically dealing practical issues associated to healthcare data analytics, vol. 70, pp. 599–613. Springer International Publishing (2020)

    Google Scholar 

  27. Praveena, A., Bharathi, B.: A survey paper on big data analytics. In: 2017 International Conference on Information Communication and Embedded Systems ICICES 2017 (2017)

    Google Scholar 

  28. Singh, D., Reddy, C.K.: A survey on platforms for big data analytics. J. Big Data 2(1), 1–20 (2015)

    Article  Google Scholar 

  29. Fu, C., Wang, X., Zhang, L., Qiao, L.: Mining algorithm for association rules in big data based on Hadoop. In: AIP Conference Proceedings, vol. 1955 (2018)

    Google Scholar 

  30. Abdel-Hamid, N.B., ElGhamrawy, S., El Desouky, A., Arafat, H.: A dynamic spark-based classification framework for imbalanced big data. J. Grid Comput. 16(4), 607–626 (2018)

    Article  Google Scholar 

  31. Alcalde-Barros, A., García-Gil, D., García, S., Herrera, F.: DPASF: a flink library for streaming data preprocessing (2018)

    Google Scholar 

  32. Furht, B., Villanustre, F.: Big Data Technologies and Applications, vol. 2, no. 21. Springer, Cham (2016)

    Google Scholar 

  33. García, S., Luengo, J., Herrera, F.: Data preparation basic models. In: Data Preprocessing in Data Mining. Intelligent Systems Reference Library, vol. 72. Springer, Cham (2015)

    Google Scholar 

  34. Russom, P.: Big data analytics - TDWI best practices report. Introduction to Big Data Analytics. TDWI Research, vol. 1, pp. 3–5 (2011)

    Google Scholar 

  35. Di Martino, B., Aversa, R., Cretella, G., Esposito, A., Kołodziej, J.: Big data (lost) in the cloud. Int. J. Big Data Intell. 1(1/2), 3 (2014)

    Article  Google Scholar 

  36. ur Rehman, M.H., Liew, C.S., Abbas, A., Jayaraman, P.P., Wah, T.Y., Khan, S.U.: Big data reduction methods: a survey. Data Sci. Eng. 1(4), 265–284 (2016)

    Article  Google Scholar 

  37. Zhang, W., He, B., Chen, Y., Zhang, Q.: GMR: graph-compatible mapreduce programming model. Multimed. Tools Appl. 78(1), 457–475 (2019)

    Article  Google Scholar 

  38. Ramírez-Gallego, S., Fernández, A., García, S., Chen, M., Herrera, F.: Big data: tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce. Inf. Fusion 42, 51–61 (2018)

    Article  Google Scholar 

  39. Chang, Y.S., Lin, K.M., Tsai, Y.T., Zeng, Y.R., Hung, C.X.: Big data platform for air quality analysis and prediction. In: 2018 27th Wireless Optical Communication Conference WOCC 2018, pp. 1–3 (2018)

    Google Scholar 

  40. Zhao, L., Chen, Z., Hu, Y., Min, G., Jiang, Z.: Distributed feature selection for efficient economic big data analysis. IEEE Trans. Big Data 4(2), 164–176 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noha Shehab , Mahmoud Badawy or Hesham Arafat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shehab, N., Badawy, M., Arafat, H. (2020). Big Data Analytics Concepts, Technologies Challenges, and Opportunities. In: Hassanien, A., Shaalan, K., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-030-31129-2_9

Download citation

Publish with us

Policies and ethics