Skip to main content

Tuning of PID Controller Using Particle Swarm Optimization for Cross Flow Heat Exchanger Based on CFD System Identification

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019 (AISI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1058))

Abstract

This paper illustrates the design of proportional–integral–derivative controller (PID) controller of 10 KW air heaters for achieving the set point temperature as fast as possible with minimum response overshoot. Computational fluid dynamic (CFD) numerical simulations are utilized to predict the natural response of 10 KW input power for the air heater. CFD results are validated with experimental empirical correlations that insure the reliability of open loop results. The open loop response of CFD transient simulations is used to model the air heater transfer function and design the classical PID controllers. Particle swarm optimization (PSO) technique is used to tune the PID controller with various error fitness functions which leads to improve the closed loop response of the temperature control system compared to the classical tuning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ansys.com/.

References

  1. Çengel, Y.A.: Heat Transfer Practical approach, 2nd edn. McGraw-Hill, New York (2002)

    Google Scholar 

  2. Cengel, Y.A., Cimbala, J.M.: Fluid Mechanics Fundamentals and Applications. McGraw-Hill, Boston (2006)

    Google Scholar 

  3. Ogata, K.: Modern Control Engineering, 5th edn. Prentice Hall, NJ (2010)

    MATH  Google Scholar 

  4. Azar, A.T., Vaidyanathan, S.: Advances in system dynamics and control. In: Advances in Computational Intelligence and Robotics (ACIR). IGI Global, USA (2018). ISBN 9781522540779

    Google Scholar 

  5. Azar, A.T., Vaidyanathan, S.: Handbook of research on advanced intelligent control engineering and automation. In: Advances in Computational Intelligence and Robotics (ACIR). IGI Global, USA (2015). ISBN 9781466672482

    Google Scholar 

  6. Vasickaninová, A., Bakošová, M.: Control of a heat exchanger using neural network predictive controller combined with auxiliary fuzzy controller. Appl. Therm. Eng. 89(2015), 1046–1053 (2015)

    Article  Google Scholar 

  7. Maidi, A., Diaf, Moussa, Corriou, Jean-Pierre: Optimal linear PI fuzzy controller design of a heat exchanger. Chem. Eng. Process. 47(5), 938–945 (2008)

    Article  Google Scholar 

  8. Vasickaninová, A., Bakošová, M., Cirka, L., Kalúz, M., Oravec, J.: Robust controller design for a laboratory heat exchanger. Appl. Therm. Eng. 128(2018), 1297–1309 (2018)

    Article  Google Scholar 

  9. Wang, Y., You, S., Zheng, W., Zhang, H., Zheng, X., Miao, O.: State space model and robust control of plate heat exchanger for dynamic performance improvement. Appl. Therm. Eng. 128(2018), 1588–1604 (2018)

    Article  Google Scholar 

  10. Jain, M., Rani, A., Pachauri, N., Singh, V., Mittal, A.P.: Design of fractional order 2-DOF PI controller for real-time control of heat flow experiment. Eng. Sci. Technol. Int. J. 22(1), 215–228 (2019)

    Article  Google Scholar 

  11. Padhee, S.: Controller design for temperature control of heat exchanger system: simulation studies. WSEAS Trans. Syst. Control 9, 485–491 (2014)

    Google Scholar 

  12. Yu, Y., Yin, D.: Application of the BP neural network PID algorithm in heat transfer station control. In: Xie, A., Huang, X. (eds.) Advances in Computer Science and Education. AISC, vol. 140. Springer, Heidelberg (2012)

    Google Scholar 

  13. Sungthong, A., Assawinchaichote, W.: Particle swam optimization based optimal PID parameters for air heater temperature control system. Procedia Comput. Sci. 86(2016), 108–111 (2016)

    Article  Google Scholar 

  14. Hoffmann, K.A., Chiang, S.T.: Computational Fluid Dynamics, Engineering Education System, 4 edn., V4 (2000)

    Google Scholar 

  15. Gherasim, I., Galanis, N., Nguyen, C.T.: Heat transfer and fluid flow in a plate heat exchanger. Part II: Assessment of laminar and two-equation turbulent models. Int. J. Thermal Sci. 50(8), 1499–1511 (2011)

    Article  Google Scholar 

  16. Allegrini, J., Dorer, V., Defraeye, T., Carmeliet, J.: An adaptive temperature wall function for mixed convective flows at exterior surfaces of buildings in street canyons. Build. Environ. 49(2012), 55–66 (2012)

    Article  Google Scholar 

  17. Zukauskas, A.: Convection heat transfer in cross flow. In: Hartnett, J.P., Irvine Jr., T.F. (eds.) Advances in Heat Transfer, vol. 8, pp. 93–106. Academic Press, New York (1972)

    Google Scholar 

  18. Azar, A.T., Serrano, F.E.: Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Comput. Appl. 25(5), 983–995 (2014)

    Article  Google Scholar 

  19. Azar, A.T., Ammar, H.H., de Brito Silva, G., Razali, M.S.A.B.: Optimal Proportional Integral Derivative (PID) controller design for smart irrigation mobile robot with soil moisture sensor. In: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019). AISC, vol 921, pp. 349–359. Springer, Cham (2020)

    Google Scholar 

  20. Hassanien, A.E., Emary, E.: Swarm Intelligence: Principles, Advances, and Applications. CRC Press, Boca Raton (2018)

    Google Scholar 

  21. Azar, A.T., Serrano, F.E.: Fractional order sliding mode PID controller/observer for continuous nonlinear switched systems with PSO parameter tuning. The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2018). AISC, vol. 723, pp. 13–22. Springer, Cham (2018)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sallam, O.K., Azar, A.T., Guaily, A., Ammar, H.H. (2020). Tuning of PID Controller Using Particle Swarm Optimization for Cross Flow Heat Exchanger Based on CFD System Identification. In: Hassanien, A., Shaalan, K., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-030-31129-2_28

Download citation

Publish with us

Policies and ethics