Advertisement

Implementation of PID Controller with PSO Tuning for Autonomous Vehicle

  • Ahmad Taher AzarEmail author
  • Hossam Hassan Ammar
  • Zahra Fathy Ibrahim
  • Habiba A. Ibrahim
  • Nada Ali Mohamed
  • Mazen Ahmed Taha
Conference paper
  • 261 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1058)

Abstract

In the use of automatic control and its optimization methods, this research discusses how Proportional Integral Derivative (PID) controller is used to provide a smooth auto-parking for an electrical autonomous car. Different tuning methods are shown, discussed, and applied to the system looking forward to enhancing its performance. Time domain specifications are used as a criterion of comparison between tuning methods in order to select the best tuning method to the system with a proper cost function. Results show that Particle Swarm Optimization (PSO) method gives the best results according the criteria of comparison.

Keywords

PID controller Particle Swarm Optimization (PSO) Ackerman steering model Lagrangian mechanics 

References

  1. 1.
    Ammar, H.H., Azar, A.T.: Robust path tracking of mobile robot using fractional order PID controller. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 370–381. Springer, Cham (2020)Google Scholar
  2. 2.
    Ammar, H.H., Azar, A.T., Tembi, T.D., Tony, K., Sosa, A.: Design and implementation of fuzzy pid controller into multi agent smart library system prototype. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), pp. 127–137. Springer, Cham (2018)CrossRefGoogle Scholar
  3. 3.
    Azar, A.T., Serrano, F.E.: Robust IMC–PID tuning for cascade control systems with gain and phase margin specifications. Neural Comput. Appl. 25(5), 983–995 (2014).  https://doi.org/10.1007/s00521-014-1560-xCrossRefGoogle Scholar
  4. 4.
    Azar, A.T., Serrano, F.E.: Design and Modeling of Anti Wind Up PID Controllers, pp. 1–44. Springer, Cham (2015)Google Scholar
  5. 5.
    Azar, A.T., Serrano, F.E.: Fractional order sliding mode PID controller/observer for continuous nonlinear switched systems with PSO parameter tuning. In: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2018), pp. 13–22. Springer (2018).  https://doi.org/10.1007/978-3-319-74690-62
  6. 6.
    Azar, A.T., Serrano, F.E.: Fractional order sliding mode PID controller/observer for continuous nonlinear switched systems with PSO parameter tuning. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2018), pp. 13–22. Springer, Cham (2018)CrossRefGoogle Scholar
  7. 7.
    Azar, A.T., Vaidyanathan, S.: Handboook of Research on Advanced Intelligent Control Engineering and Automation. IGI Global, New York (2015)CrossRefGoogle Scholar
  8. 8.
    Azar, A.T., Serrano, F.E., Vaidyanathan, S.: Proportional integral loop shaping control design with particle swarm optimization tuning. In: Advances in System Dynamics and Control, pp. 24–57. IGI Global (2018).  https://doi.org/10.4018/978-1-5225-4077-9.ch002
  9. 9.
    Bimbraw, K.: Autonomous cars: Past, present and future a review of the developments in the last century, the present scenario and the expected future of autonomous vehicle technology. In: 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 01, pp. 191–198 (2015)Google Scholar
  10. 10.
    Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Elsevier, Amsterdam (2001)Google Scholar
  11. 11.
    Gerla, M., Lee, E.K., Pau, G., Lee, U.: Internet of vehicles: from intelligent grid to autonomous cars and vehicular clouds. In: 2014 IEEE World Forum on Internet of Things (WF-IoT). IEEE (2014).  https://doi.org/10.1109/wf-iot.2014.6803166
  12. 12.
    Gorripotu, T.S., Samalla, H., Jagan Mohana Rao, C., Azar, A.T., Pelusi, D.: TLBO algorithm optimized fractional-order pid controller for AGC of interconnected power system. In: Nayak, J., Abraham, A., Krishna, B.M., Chandra Sekhar, G.T., Das, A.K. (eds.) Soft Computing in Data Analytics, pp. 847–855. Springer, Singapore (2019)CrossRefGoogle Scholar
  13. 13.
    Hussain, K.M., Zepherin, R.A.R., Kumar, M.S.: Comparison of tuning methods of PID controllers for FOPTD system. IJIREEICE 2(3), 1177–1180 (2014)Google Scholar
  14. 14.
    Joseph EAAMCR: Cohen-coon PID tuning method: A better option to ziegler nichols-pid tuning method. Computer Engineering and Intelligent Systems (2018)Google Scholar
  15. 15.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  16. 16.
    Maiti, D., Acharya, A., Chakraborty, M., Konar, A., Janarthanan, R.: Tuning PID and \(pi^\lambda d^\mu \) controllers using the integral time absolute error criterion. In: 2008 4th International Conference on Information and Automation for Sustainability. IEEE (2008).  https://doi.org/10.1109/iciafs.2008.4783932
  17. 17.
    Ogata, K.: Modern Control Engineering. Prentice Hall, Upper Saddle River (2010)Google Scholar
  18. 18.
    Shahrokhi, M., Zomorrodi, A.: Comparison of PID controller tuning methods. Department of Chemical & Petroleum Engineering Sharif University of Technology, pp. 1–2 (2013)Google Scholar
  19. 19.
    Soliman, M., Azar, A.T., Saleh, M.A., Ammar, H.H.: Path planning control for 3-OMNI fighting robot using PID and fuzzy logic controller. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., F Tolba, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 442–452. Springer, Cham (2020)Google Scholar
  20. 20.
    Stone, R., Ball, J.K.: Automotive Engineering Fundamentals. SAE International (2004)Google Scholar
  21. 21.
    Sukthankar, R.: Raccoon: a real-time autonomous car chaser operating optimally at night. In: Proceedings of the Intelligent Vehicles ’93 Symposium, pp. 37–42 (1993).  https://doi.org/10.1109/IVS.1993.697294
  22. 22.
    Tseng, Y., Jan, S.: Combination of computer vision detection and segmentation for autonomous driving. In: 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 1047–1052 (2018).  https://doi.org/10.1109/PLANS.2018.8373485
  23. 23.
    Xu, W., Yan, C., Jia, W., Ji, X., Liu, J.: Analyzing and enhancing the security of ultrasonic sensors for autonomous vehicles. IEEE Internet Things J. 5(6), 5015–5029 (2018).  https://doi.org/10.1109/jiot.2018.2867917CrossRefGoogle Scholar
  24. 24.
    Ziegler, J., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64(8), 759768 (1942)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ahmad Taher Azar
    • 1
    • 2
    Email author
  • Hossam Hassan Ammar
    • 3
  • Zahra Fathy Ibrahim
    • 3
  • Habiba A. Ibrahim
    • 3
  • Nada Ali Mohamed
    • 3
  • Mazen Ahmed Taha
    • 3
  1. 1.College of EngineeringPrince Sultan UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Faculty of Computers and Artificial IntelligenceBenha UniversityBenhaEgypt
  3. 3.School of Engineering and Applied SciencesNile University Campus6th of October City, GizaEgypt

Personalised recommendations