Advertisement

Controlling Chaotic System via Optimal Control

  • Shikha Singh
  • Ahmad Taher AzarEmail author
Conference paper
  • 225 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1058)

Abstract

Chaos is a bounded unstable dynamic behavior that exhibits sensitive dependence on initial conditions and includes infinite unstable periodic motions. This article examines the controlling of a chaotic system via optimal control technique which is based on the Pontryagin minimum principle. A 3D chaotic system is considered to apply this scheme which have 5 equilibrium points. Finally, numerical simulations are presented to demonstrate the effectiveness of the proposed method. The simulation results illustrated the stabilized behaviour of states and control functions for different equilibrium points.

Keywords

Chaotic system Equilibrium points Chaos control Optimal control 

References

  1. 1.
    Azar, A.T., Vaidyanathan, S.: Advances in Chaos Theory and Intelligent Control. Springer, Berlin (2016)CrossRefGoogle Scholar
  2. 2.
    Azar, A.T., Ouannas, A., Singh, S.: Control of new type of fractional chaos synchronization. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 47–56. Springer, Cham (2017)Google Scholar
  3. 3.
    Azar, A.T., Vaidyanathan, S., Ouannas, A.: Fractional order control and synchronization of chaotic systems. In: Studies in Computational Intelligence, vol. 688. Springer, Berlin (2017)Google Scholar
  4. 4.
    Babaei, M.: A novel text and image encryption method based on chaos theory and DNA computing. Nat. Comput. 12(1), 101–107 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bhat, M.A., Shikha: Complete synchronisation of non-identical fractionalorder hyperchaotic systems using active control. Int. J. Autom. Control 13(2), 140–157 (2019)Google Scholar
  6. 6.
    Bozoki, Z.: Chaos theory and power spectrum analysis in computerized cardiotocography. Eur. J. Obstet. Gynecol. Reprod. Biol. 71(2), 163–168 (1997)CrossRefGoogle Scholar
  7. 7.
    Çavuşoğlu, Ü., Panahi, S., Akgül, A., Jafari, S., Kaçar, S.: A new chaotic system with hidden attractor and its engineering applications: analog circuit realization and image encryption. Analog Integr. Circ. Sig. Process 98(1), 85–99 (2019)CrossRefGoogle Scholar
  8. 8.
    Chekan, J.A., Ali Nojoumian, M., Merat, K., Salarieh, H.: Chaos control in lateral oscillations of spinning disk via linear optimal control of discrete systems. J. Vib. Control 23(1), 103–110 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chien, T.I., Liao, T.L.: Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization. Chaos, Solitons Fractals 24(1), 241–255 (2005)CrossRefGoogle Scholar
  10. 10.
    Din, Q.: Stability, bifurcation analysis and chaos control for a predator-prey system. J. Vib. Control 25(3), 612–626 (2019)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Edelman, M.: On stability of fixed points and chaos in fractional systems. Chaos Interdisc. J. Nonlinear Sci. 28(2), 023112 (2018).  https://doi.org/10.1063/1.5016437MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Čelikovský, S., Lynnyk, V., Chen, G.: Robust synchronization of a class of chaotic networks. J. Franklin Inst. 350(10), 2936–2948 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Frey, D.R.: Chaotic digital encoding: an approach to secure communication. In: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 40, no. 10, pp. 660–666 (1993)Google Scholar
  14. 14.
    Garfinkel, A.: Controlling cardiac chaos. Science (1992)Google Scholar
  15. 15.
    Khan, A., Singh, S.: Mixed tracking and projective synchronization of 6D hyperchaotic system using active control. Int. J. Nonlinear Sci. 22(1), 44–53 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Khan, A., Singh, S.: Combination synchronization of time-delay chaotic system via robust adaptive sliding mode control. Pramana 88(6), 91 (2017)CrossRefGoogle Scholar
  17. 17.
    Khan, A., Singh, S.: Hybrid function projective synchronization of chaotic systems via adaptive control. Int. J. Dyn. Control 5(4), 1114–1121 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khan, A., Singh, S.: Chaotic analysis and combination-combination synchronization of a novel hyperchaotic system without any equilibria. Chin. J. Phys. 56(1), 238–251 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Khan, A., Singh, S.: Generalization of combination-combination synchronization of n-dimensional time-delay chaotic system via robust adaptive sliding mode control. Math. Methods Appl. Sci. 41(9), 3356–3369 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Khan, A., Tyagi, A.: Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design. Int. J. Dyn. Control 5(4), 1147–1155 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lau, F., Tse, C.K.: Chaos-based digital communication systems. Springer (2003)Google Scholar
  22. 22.
    Ott, E., Spano, M.: Controlling chaos. In: AIP Conference Proceedings, vol. 375, pp. 92–103. AIP (1996)Google Scholar
  23. 23.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ouannas, A., Grassi, G., Azar, A.T., Singh, S.: New control schemes for fractional chaos synchronization. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 52–63. Springer (2018)Google Scholar
  25. 25.
    Ouannas, A., Grassi, G., Azar, A.T., Gasri, A.: A new control scheme for hybrid chaos synchronization. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp. 108–116. Springer International Publishing, Cham (2019)Google Scholar
  26. 26.
    Ouannas, A., Grassi, G., Azar, A.T.: Fractional-order control scheme for Q-S chaos synchronization. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., F Tolba, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp 434–441. Springer International Publishing, Cham (2020)Google Scholar
  27. 27.
    Ouannas, A., Grassi, G., Azar, A.T.: A new generalized synchronization scheme to control fractional chaotic systems with non-identical dimensions and different orders. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., F Tolba M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019), pp. 415–424. Springer International Publishing, Cham (2020)Google Scholar
  28. 28.
    Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L., et al.: Controlling chaos in the brain. Nature 370(6491), 615–620 (1994)CrossRefGoogle Scholar
  29. 29.
    Singh, S., Azar, A.T., Ouannas, A., Zhu, Q., Zhang, W., Na, J.: Sliding mode control technique for multi-switching synchronization of chaotic systems. In: 2017 9th International Conference on Modelling, pp. 880–885. Identification and Control (ICMIC). IEEE (2017)Google Scholar
  30. 30.
    Singh, S., Azar, A.T., Bhat, M.A., Vaidyanathan, S., Ouannas, A.: Active control for multi-switching combination synchronization of non-identical chaotic systems. In: Advances in System Dynamics and Control, pp. 129–162. IGI Global (2018)Google Scholar
  31. 31.
    Singh, S., Azar, A.T., Vaidyanathan, S., Ouannas, A., Bhat, M.A.: Multiswitching synchronization of commensurate fractional order hyperchaotic systems via active control. In: Mathematical Techniques of Fractional Order Systems, pp. 319–345. Elsevier (2018)Google Scholar
  32. 32.
    Sivakumar, B.: Chaos theory in hydrology: important issues and interpretations. J. Hydrol. 227(1–4), 1–20 (2000)CrossRefGoogle Scholar
  33. 33.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2001)zbMATHGoogle Scholar
  34. 34.
    Vaidyanathan, S., Azar, A.T.: Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Chaos Modeling and Control Systems Design. Springer, pp. 19–38 (2015)Google Scholar
  35. 35.
    Vaidyanathan, S., Azar, A.T.: Anti-synchronization of identical chaotic systems using sliding mode control and an application to vaidyanathan-madhavan chaotic systems. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control Systems, Studies in Computational Intelligence, vol. 576, pp. 527–547. Springer, Berlin (2015)Google Scholar
  36. 36.
    Vaidyanathan, S., Azar, A.T.: Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control Systems, Studies in Computational Intelligence, vol. 576. Springer, Berlin, pp. 549–569 (2015)Google Scholar
  37. 37.
    Vaidyanathan, S., Idowu, B.A., Azar, A.T.: Backstepping controller design for the global chaos synchronization of sprott’s jerk systems. In: Chaos Modeling and Control Systems Design, pp. 39–58. Springer (2015)Google Scholar
  38. 38.
    Vaidyanathan, S., Azar, A.T., Boulkroune, A.: A novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive synchronisation. Int. J. Autom. Control 12(1), 5–26 (2018)CrossRefGoogle Scholar
  39. 39.
    Xing-yuan, W., Yong-feng, G.: A switch-modulated method for chaos digital secure communication based on user-defined protocol. Commun. Commun. Nonlinear Sci. Numer. Simul. 15(1), 99–104 (2010). sI: Chaos, Complexity and Transport: Theory and ApplicationsGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsJesus and Mary College, University of DelhiNew DelhiIndia
  2. 2.College of EngineeringPrince Sultan UniversityRiyadhKingdom of Saudi Arabia
  3. 3.Faculty of Computers and InformationBenha UniversityBenhaEgypt

Personalised recommendations