Skip to main content

Adaptive Terminal-Integral Sliding Mode Force Control of Elastic Joint Robot Manipulators in the Presence of Hysteresis

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1058))

Abstract

In this paper, an adaptive terminal-integral sliding mode force control of elastic joint robot manipulators in the presence of hysteresis is proposed. One of the most important issues that is solved in this study is that the hysteresis phenomenon is considered something that provokes losses in the manipulator motion and controller errors. Force control is necessary because it can be implemented and very useful in the area of industrial robotics such as collaborative and cooperative robotics. Therefore, it can be implemented for precise control in which robot-operator or robot-robot interaction is needed. An adaptive terminal-integral sliding mode force control is proposed by considering the hysteresis and the effects between the end effector and a flexible environment. Force control has not been studied extensively nowadays and even less for elastic joint robot manipulators. Thus, to improve the system precision control, the adaptive sliding mode controller (ASMC) is designed by a Lyapunov approach obtaining the adaptive and controller laws, respectively. As an experimental case study, two links elastic joint robot manipulator is considered by obtaining the elastic joint model with hysteresis using a Bouc-Wen model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adhikary, N., Mahanta, C.: Sliding mode control of position commanded robot manipulators. Control Eng. Pract. 81, 183–198 (2018)

    Article  Google Scholar 

  2. Azar, A.T., Serrano, F.E.: Adaptive sliding mode control of the Furuta Pendulum, vol. 576, pp. 1–42. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11173-5_1

  3. Azar, A.T., Serrano, F.E.: Stabilizatoin and control of mechanical systems with Backlash. In: Advances in Computational Intelligence and Robotics (ACIR), pp 1–60. IGI-Global (2015)

    Google Scholar 

  4. Azar, A.T., Serrano, F.E.: Stabilization of mechanical systems with backlash by PI loop shaping. Int. J. Syst. Dyn. Appl. 5(3), 21–46 (2016)

    Google Scholar 

  5. Azar, A.T., Serrano, F.E.: Adaptive decentralised sliding mode controller and observer for asynchronous nonlinear large-scale systems with backlash. Int. J. Model. Ident. Control 30(1), 61–71 (2018)

    Article  Google Scholar 

  6. Azar, A.T., Zhu, Q.: Advances and applications in sliding mode control systems. In: Studies in Computational Intelligence, vol. 576. Springer (2015)

    Google Scholar 

  7. Azar, A.T., Kumar, J., Kumar, V., Rana, K.P.S.: Control of a two link planar electrically-driven rigid robotic manipulator using fractional order SOFC, pp. 57–68. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64861-3_6

  8. Ba, K., Yu, B., Gao, Z., Zhu, Q., Ma, G., Kong, X.: An improved force-based impedance control method for the hdu of legged robots. ISA Trans. 84, 187–205 (2019)

    Article  Google Scholar 

  9. Baigzadehnoe, B., Rahmani, Z., Khosravi, A., Rezaie, B.: On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach. ISA Trans. 70, 432–446 (2017)

    Article  Google Scholar 

  10. Chen, F., Zhao, H., Li, D., Chen, L., Tan, C., Ding, H.: Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot. Comput. Integr. Manuf. 57, 391–403 (2019)

    Article  Google Scholar 

  11. Colangelo, F.: Interaction of axial force and bending moment by using Bouc-Wen hysteresis and stochastic linearization. Struct. Saf. 67, 39–53 (2017)

    Article  Google Scholar 

  12. Deng, Y., Wang, J., Li, H., Liu, J., Tian, D.: Adaptive sliding mode current control with sliding mode disturbance observer for PMSM drives. ISA Trans. 88, 113–126 (2019)

    Article  Google Scholar 

  13. Fan, C., Hong, G.S., Zhao, J., Zhang, L., Zhao, J., Sun, L.: The integral sliding mode control of a pneumatic force servo for the polishing process. Precis. Eng. 55, 154–170 (2019)

    Article  Google Scholar 

  14. Furat, M., Eker, I.: Second-order integral sliding-mode control with experimental application. ISA Trans. 53(5), 1661–1669 (2014)

    Article  Google Scholar 

  15. Gierlak, P., Szuster, M.: Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot. Auton. Syst. 95, 80–101 (2017)

    Article  Google Scholar 

  16. Gracia, L., Solanes, J.E., Muoz-Benavent, P., Esparza, A., VallsMiro, J., Tornero, J.: Cooperative transport tasks with robots using adaptive non-conventional sliding mode control. Control Eng. Pract. 78, 35–55 (2018)

    Article  Google Scholar 

  17. Gracia, L., Solanes, J.E., Muoz-Benavent, P., Miro, J.V., Perez-Vidal, C., Tornero, J.: Adaptive sliding mode control for robotic surface treatment using force feedback. Mechatronics 52, 102–118 (2018)

    Article  Google Scholar 

  18. Haghighi, D.A., Mobayen, S.: Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems. ISA Trans. 75, 216–225 (2018)

    Article  Google Scholar 

  19. Han, S.I., Lee, J.: Finite-time sliding surface constrained control for a robot manipulator with an unknown deadzone and disturbance. ISA Trans. 65, 307–318 (2016)

    Article  Google Scholar 

  20. Helma, V., Goubej, M., Jezek, O.: Acceleration feedback in PID controlled elastic drive systems. IFAC-PapersOnLine 51(4), 214–219 (2018)

    Article  Google Scholar 

  21. Jing, C., Xu, H., Niu, X.: Adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. ISA Trans. (2019)

    Google Scholar 

  22. Ma, Z., Sun, G.: Dual terminal sliding mode control design for rigid robotic manipulator. J. Franklin Inst. 355(18), 9127–9149 (2018). special Issue on Control and Signal Processing in Mechatronic Systems

    Article  MathSciNet  Google Scholar 

  23. Mekki, H., Boukhetala, D., Azar, A.T.: Sliding modes for fault tolerant control. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control systems, pp. 407–433. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  24. Navvabi, H., Markazi, A.H.: Hybrid position/force control of Stewart Manipulator using extended adaptive fuzzy sliding mode controller (e-afsmc). ISA Trans. 88, 280–295 (2019)

    Article  Google Scholar 

  25. Oaki, J.: Physical parameter estimation for feedforward and feedback control of a robot arm with elastic joints. IFAC-PapersOnLine 51(15), 425–430 (2018)

    Article  Google Scholar 

  26. Peng, J., Yang, Z., Wang, Y., Zhang, F., Liu, Y.: Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach. ISA Trans. (2019)

    Google Scholar 

  27. Pliego-Jimenez, J., Arteaga-Perez, M.A.: Adaptive position/force control for robot manipulators in contact with a rigid surface with uncertain parameters. Eur. J. Control 22, 1–12 (2015)

    Article  MathSciNet  Google Scholar 

  28. Ravandi, A.K., Khanmirza, E., Daneshjou, K.: Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Appl. Soft Comput. 70, 864–874 (2018)

    Article  Google Scholar 

  29. Ruderman, M.: Feedback linearization control of flexible structures with hysteresis. IFAC-PapersOnLine 48(11), 906–911 (2015)

    Article  Google Scholar 

  30. Ruderman, M., Bertram, T.: Modeling and observation of hysteresis lost motion in elastic robot joints. IFAC Proc. Volumes 45(22), 13–18 (2012)

    Article  Google Scholar 

  31. Ruderman, M., Bertram, T., Iwasaki, M.: Modeling, observation, and control of hysteresis torsion in elastic robot joints. Mechatronics 24(5), 407–415 (2014)

    Article  Google Scholar 

  32. Seo, I.S., Han, S.I.: Dual closed-loop sliding mode control for a decoupled three-link wheeled mobile manipulator. ISA Trans. 80, 322–335 (2018)

    Article  Google Scholar 

  33. Solanes, J.E., Gracia, L., Muoz-Benavent, P., Miro, J.V., Carmichael, M.G., Tornero, J.: Humanrobot collaboration for safe object transportation using force feedback. Robot. Auton. Syst. 107, 196–208 (2018)

    Article  Google Scholar 

  34. Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2006)

    Google Scholar 

  35. Sun, L., Wang, W., Yi, R., Xiong, S.: A novel guidance law using fast terminal sliding mode control with impact angle constraints. ISA Trans. 64, 12–23 (2016)

    Article  Google Scholar 

  36. Vaidyanathan, S., Azar, A.T.: Hybrid synchronization of identical chaotic systems using sliding mode control and an application to vaidyanathan chaotic systems. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control Systems. Studies in Computational Intelligence, vol. 576, pp. 549–569. Springer, Berlin (2015)

    Chapter  Google Scholar 

  37. Vaidyanathan, S., Sampath, S., Azar, A.T.: Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to zhu system. Int. J. Modell. Ident. Control 23(1), 92–100 (2015)

    Article  Google Scholar 

  38. Wang, Y., Xia, Y., Li, H., Zhou, P.: A new integral sliding mode design method for nonlinear stochastic systems. Automatica 90, 304–309 (2018)

    Article  MathSciNet  Google Scholar 

  39. Wang, Y., Chen, J., Yan, F., Zhu, K., Chen, B.: Adaptive super-twisting fractional-order nonsingular terminal sliding mode control of cable-driven manipulators. ISA Trans. 86, 163–180 (2019)

    Article  Google Scholar 

  40. Yi, S., Zhai, J.: Adaptive second-order fast nonsingular terminal slidingmode control for robotic manipulators. ISA Trans. (2019)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Robotics and Internet of Things lab of Prince Sultan University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azar, A.T., Serrano, F.E., Koubaa, A., Kamal, N.A., Vaidyanathan, S., Fekik, A. (2020). Adaptive Terminal-Integral Sliding Mode Force Control of Elastic Joint Robot Manipulators in the Presence of Hysteresis. In: Hassanien, A., Shaalan, K., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-030-31129-2_25

Download citation

Publish with us

Policies and ethics