Advertisement

Adaptive Terminal-Integral Sliding Mode Force Control of Elastic Joint Robot Manipulators in the Presence of Hysteresis

  • Ahmad Taher AzarEmail author
  • Fernando E. Serrano
  • Anis Koubaa
  • Nashwa Ahmad Kamal
  • Sundarapandian Vaidyanathan
  • Arezki Fekik
Conference paper
  • 238 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1058)

Abstract

In this paper, an adaptive terminal-integral sliding mode force control of elastic joint robot manipulators in the presence of hysteresis is proposed. One of the most important issues that is solved in this study is that the hysteresis phenomenon is considered something that provokes losses in the manipulator motion and controller errors. Force control is necessary because it can be implemented and very useful in the area of industrial robotics such as collaborative and cooperative robotics. Therefore, it can be implemented for precise control in which robot-operator or robot-robot interaction is needed. An adaptive terminal-integral sliding mode force control is proposed by considering the hysteresis and the effects between the end effector and a flexible environment. Force control has not been studied extensively nowadays and even less for elastic joint robot manipulators. Thus, to improve the system precision control, the adaptive sliding mode controller (ASMC) is designed by a Lyapunov approach obtaining the adaptive and controller laws, respectively. As an experimental case study, two links elastic joint robot manipulator is considered by obtaining the elastic joint model with hysteresis using a Bouc-Wen model.

Keywords

Hysteresis Flexible structures Robotics Force control Integral sliding mode control Terminal sliding mode control 

Notes

Acknowledgments

This work is supported by the Robotics and Internet of Things lab of Prince Sultan University, Saudi Arabia.

References

  1. 1.
    Adhikary, N., Mahanta, C.: Sliding mode control of position commanded robot manipulators. Control Eng. Pract. 81, 183–198 (2018)CrossRefGoogle Scholar
  2. 2.
    Azar, A.T., Serrano, F.E.: Adaptive sliding mode control of the Furuta Pendulum, vol. 576, pp. 1–42. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-11173-5_1
  3. 3.
    Azar, A.T., Serrano, F.E.: Stabilizatoin and control of mechanical systems with Backlash. In: Advances in Computational Intelligence and Robotics (ACIR), pp 1–60. IGI-Global (2015)Google Scholar
  4. 4.
    Azar, A.T., Serrano, F.E.: Stabilization of mechanical systems with backlash by PI loop shaping. Int. J. Syst. Dyn. Appl. 5(3), 21–46 (2016)Google Scholar
  5. 5.
    Azar, A.T., Serrano, F.E.: Adaptive decentralised sliding mode controller and observer for asynchronous nonlinear large-scale systems with backlash. Int. J. Model. Ident. Control 30(1), 61–71 (2018)CrossRefGoogle Scholar
  6. 6.
    Azar, A.T., Zhu, Q.: Advances and applications in sliding mode control systems. In: Studies in Computational Intelligence, vol. 576. Springer (2015)Google Scholar
  7. 7.
    Azar, A.T., Kumar, J., Kumar, V., Rana, K.P.S.: Control of a two link planar electrically-driven rigid robotic manipulator using fractional order SOFC, pp. 57–68. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-64861-3_6
  8. 8.
    Ba, K., Yu, B., Gao, Z., Zhu, Q., Ma, G., Kong, X.: An improved force-based impedance control method for the hdu of legged robots. ISA Trans. 84, 187–205 (2019)CrossRefGoogle Scholar
  9. 9.
    Baigzadehnoe, B., Rahmani, Z., Khosravi, A., Rezaie, B.: On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach. ISA Trans. 70, 432–446 (2017)CrossRefGoogle Scholar
  10. 10.
    Chen, F., Zhao, H., Li, D., Chen, L., Tan, C., Ding, H.: Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot. Comput. Integr. Manuf. 57, 391–403 (2019)CrossRefGoogle Scholar
  11. 11.
    Colangelo, F.: Interaction of axial force and bending moment by using Bouc-Wen hysteresis and stochastic linearization. Struct. Saf. 67, 39–53 (2017)CrossRefGoogle Scholar
  12. 12.
    Deng, Y., Wang, J., Li, H., Liu, J., Tian, D.: Adaptive sliding mode current control with sliding mode disturbance observer for PMSM drives. ISA Trans. 88, 113–126 (2019)CrossRefGoogle Scholar
  13. 13.
    Fan, C., Hong, G.S., Zhao, J., Zhang, L., Zhao, J., Sun, L.: The integral sliding mode control of a pneumatic force servo for the polishing process. Precis. Eng. 55, 154–170 (2019)CrossRefGoogle Scholar
  14. 14.
    Furat, M., Eker, I.: Second-order integral sliding-mode control with experimental application. ISA Trans. 53(5), 1661–1669 (2014)CrossRefGoogle Scholar
  15. 15.
    Gierlak, P., Szuster, M.: Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot. Auton. Syst. 95, 80–101 (2017)CrossRefGoogle Scholar
  16. 16.
    Gracia, L., Solanes, J.E., Muoz-Benavent, P., Esparza, A., VallsMiro, J., Tornero, J.: Cooperative transport tasks with robots using adaptive non-conventional sliding mode control. Control Eng. Pract. 78, 35–55 (2018)CrossRefGoogle Scholar
  17. 17.
    Gracia, L., Solanes, J.E., Muoz-Benavent, P., Miro, J.V., Perez-Vidal, C., Tornero, J.: Adaptive sliding mode control for robotic surface treatment using force feedback. Mechatronics 52, 102–118 (2018)CrossRefGoogle Scholar
  18. 18.
    Haghighi, D.A., Mobayen, S.: Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems. ISA Trans. 75, 216–225 (2018)CrossRefGoogle Scholar
  19. 19.
    Han, S.I., Lee, J.: Finite-time sliding surface constrained control for a robot manipulator with an unknown deadzone and disturbance. ISA Trans. 65, 307–318 (2016)CrossRefGoogle Scholar
  20. 20.
    Helma, V., Goubej, M., Jezek, O.: Acceleration feedback in PID controlled elastic drive systems. IFAC-PapersOnLine 51(4), 214–219 (2018)CrossRefGoogle Scholar
  21. 21.
    Jing, C., Xu, H., Niu, X.: Adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. ISA Trans. (2019)Google Scholar
  22. 22.
    Ma, Z., Sun, G.: Dual terminal sliding mode control design for rigid robotic manipulator. J. Franklin Inst. 355(18), 9127–9149 (2018). special Issue on Control and Signal Processing in Mechatronic SystemsMathSciNetCrossRefGoogle Scholar
  23. 23.
    Mekki, H., Boukhetala, D., Azar, A.T.: Sliding modes for fault tolerant control. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control systems, pp. 407–433. Springer International Publishing, Cham (2015)CrossRefGoogle Scholar
  24. 24.
    Navvabi, H., Markazi, A.H.: Hybrid position/force control of Stewart Manipulator using extended adaptive fuzzy sliding mode controller (e-afsmc). ISA Trans. 88, 280–295 (2019)CrossRefGoogle Scholar
  25. 25.
    Oaki, J.: Physical parameter estimation for feedforward and feedback control of a robot arm with elastic joints. IFAC-PapersOnLine 51(15), 425–430 (2018)CrossRefGoogle Scholar
  26. 26.
    Peng, J., Yang, Z., Wang, Y., Zhang, F., Liu, Y.: Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach. ISA Trans. (2019)Google Scholar
  27. 27.
    Pliego-Jimenez, J., Arteaga-Perez, M.A.: Adaptive position/force control for robot manipulators in contact with a rigid surface with uncertain parameters. Eur. J. Control 22, 1–12 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ravandi, A.K., Khanmirza, E., Daneshjou, K.: Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Appl. Soft Comput. 70, 864–874 (2018)CrossRefGoogle Scholar
  29. 29.
    Ruderman, M.: Feedback linearization control of flexible structures with hysteresis. IFAC-PapersOnLine 48(11), 906–911 (2015)CrossRefGoogle Scholar
  30. 30.
    Ruderman, M., Bertram, T.: Modeling and observation of hysteresis lost motion in elastic robot joints. IFAC Proc. Volumes 45(22), 13–18 (2012)CrossRefGoogle Scholar
  31. 31.
    Ruderman, M., Bertram, T., Iwasaki, M.: Modeling, observation, and control of hysteresis torsion in elastic robot joints. Mechatronics 24(5), 407–415 (2014)CrossRefGoogle Scholar
  32. 32.
    Seo, I.S., Han, S.I.: Dual closed-loop sliding mode control for a decoupled three-link wheeled mobile manipulator. ISA Trans. 80, 322–335 (2018)CrossRefGoogle Scholar
  33. 33.
    Solanes, J.E., Gracia, L., Muoz-Benavent, P., Miro, J.V., Carmichael, M.G., Tornero, J.: Humanrobot collaboration for safe object transportation using force feedback. Robot. Auton. Syst. 107, 196–208 (2018)CrossRefGoogle Scholar
  34. 34.
    Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2006)Google Scholar
  35. 35.
    Sun, L., Wang, W., Yi, R., Xiong, S.: A novel guidance law using fast terminal sliding mode control with impact angle constraints. ISA Trans. 64, 12–23 (2016)CrossRefGoogle Scholar
  36. 36.
    Vaidyanathan, S., Azar, A.T.: Hybrid synchronization of identical chaotic systems using sliding mode control and an application to vaidyanathan chaotic systems. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control Systems. Studies in Computational Intelligence, vol. 576, pp. 549–569. Springer, Berlin (2015)CrossRefGoogle Scholar
  37. 37.
    Vaidyanathan, S., Sampath, S., Azar, A.T.: Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to zhu system. Int. J. Modell. Ident. Control 23(1), 92–100 (2015)CrossRefGoogle Scholar
  38. 38.
    Wang, Y., Xia, Y., Li, H., Zhou, P.: A new integral sliding mode design method for nonlinear stochastic systems. Automatica 90, 304–309 (2018)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, Y., Chen, J., Yan, F., Zhu, K., Chen, B.: Adaptive super-twisting fractional-order nonsingular terminal sliding mode control of cable-driven manipulators. ISA Trans. 86, 163–180 (2019)CrossRefGoogle Scholar
  40. 40.
    Yi, S., Zhai, J.: Adaptive second-order fast nonsingular terminal slidingmode control for robotic manipulators. ISA Trans. (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ahmad Taher Azar
    • 1
    • 2
    Email author
  • Fernando E. Serrano
    • 3
  • Anis Koubaa
    • 4
    • 5
    • 6
  • Nashwa Ahmad Kamal
    • 7
  • Sundarapandian Vaidyanathan
    • 8
  • Arezki Fekik
    • 9
  1. 1.College of EngineeringPrince Sultan UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Faculty of Computers and Artificial IntelligenceBenha UniversityBenhaEgypt
  3. 3.Universidad Tecnologica Centroamericana (UNITEC)TegucigalpaHonduras
  4. 4.Prince Sultan UniversityRiyadhKingdom of Saudi Arabia
  5. 5.CISTER, INESC-TEC, ISEP, Polytechnic Institute of PortoPortoPortugal
  6. 6.Gaitech RoboticsShanghaiChina
  7. 7.Electrical Power and Machine Department, Faculty of EngineeringCairo UniversityGizaEgypt
  8. 8.Research and Development CentreVel Tech University AvadiChennaiIndia
  9. 9.Electrical Engineering Advanced Technology Laboratory (LATAGE)University Mouloud Mammeri of Tizi-OuzouTizi OuzouAlgeria

Personalised recommendations