Robust H-Infinity Decentralized Control for Industrial Cooperative Robots

  • Ahmad Taher AzarEmail author
  • Fernando E. Serrano
  • Ibrahim A. Hameed
  • Nashwa Ahmad Kamal
  • Sundarapandian Vaidyanathan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1058)


In this paper, a robust H-infinity controller is proposed for industrial cooperative robots in which disturbances are taken into account for an appropriate controller design. Considering the disturbance affects the system performance is important to design an efficient control strategy to solve this problem. On the other side, robust control is necessary taking into account that disturbances, uncertainties and other unmodelled dynamics affecting the system performance for tracking control purposes. The main objective of this study is to control in a synchronized way several industrial robotic manipulators in a work-cell so the obtained results will be useful for different kinds of manufacturing processes. For this objective, the distributed dynamical model of the robot in the form of the Euler-Lagrange equation is established to derive the proposed control strategy that in this case consists of a robust H-infinity controller to deal with the disturbances in the robot manipulators and other kinds of uncertainties. For this purpose, a norm index is implemented for robust performance attributes of the system so in this way the controller is designed efficiently. One of the most important contributions of this study is that the position tracking of an object grasped by two or more industrial robotic manipulators is driven accurately. This can be done by obtaining the desired position and orientations of the end effectors of each robot and reducing the tracking error to zero as times goes to infinity while following a predefined path trajectory for the grasped object. Finally, a numerical simulation example and conclusions will be offered to validate and analyze the theoretical results obtained in this study.


Cooperative robotics Distributed control Robust control H-infinity control 


  1. 1.
    Abbaspour, A., Alipour, K., Zare Jafari, H., Moosavian, S.: Optimal formation and control of cooperative wheeled mobile robots. C. R. Mec. 343(5–6), 307–321 (2015)CrossRefGoogle Scholar
  2. 2.
    Agand, P., Motaharifar, M., Taghirad, H.: Decentralized robust control for teleoperated needle insertion with uncertainty and communication delay. Mechatronics 46, 46–59 (2017)CrossRefGoogle Scholar
  3. 3.
    Ammar, H.H., Azar, A.T., Tembi, T.D., Tony, K., Sosa, A.: Design and implementation of fuzzy PID controller into multi agent smart library system prototype. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), pp. 127–137. Springer International Publishing, Cham (2018)Google Scholar
  4. 4.
    Azar, A.T., Serrano, F.E.: Adaptive decentralised sliding mode controller and observer for asynchronous nonlinear large-scale systems with backlash. Int. J. Model. Ident. Control 30(1), 61–71 (2018)CrossRefGoogle Scholar
  5. 5.
    Azar, A.T., Ammar, H.H., Barakat, M.H., Saleh, M.A., Abdelwahed, M.A.: Self-balancing robot modeling and control using two degree of freedom PID controller. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp. 64–76. Springer International Publishing, Cham (2019)Google Scholar
  6. 6.
    Azar, A.T., Hassan, H., Razali, M.S.A.B., de Brito Silva, G., Ali, H.R.: Two-degree of freedom proportional integral derivative (2-DOF PID) controller for robotic infusion stand. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp. 13–25. Springer International Publishing, Cham (2019)Google Scholar
  7. 7.
    Baigzadehnoe, B., Rahmani, Z., Khosravi, A., Rezaie, B.: On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach. ISA Trans. 70, 432–446 (2017)CrossRefGoogle Scholar
  8. 8.
    Fekik, A., Denoun, H., Azar, A.T., Hamida, M.L., Zaouia, M., Benyahia, N.: Comparative study of two level and three level PWM-rectifier with voltage oriented control. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp. 40–51. Springer International Publishing, Cham (2019)Google Scholar
  9. 9.
    Hichri, B., Fauroux, J.C., Adouane, L., Doroftei, I., Mezouar, Y.: Design of cooperative mobile robots for co-manipulation and transportation tasks. Rob. Comput. Integr. Manuf. 57, 412–421 (2019)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Huang, P., Zhang, F., Zhao, Y.: Robust distributed consensus for deployment of tethered space net robot. Aerosp. Sci. Technol. 77, 524–533 (2018)CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Liu, X., Jing, Y., Zhou, S.: Adaptive backstepping H infinity tracking control with prescribed performance for internet congestion. ISA Trans. 72, 92–99 (2018)CrossRefGoogle Scholar
  12. 12.
    Marino, A., Pierri, F.: A two stage approach for distributed cooperative manipulation of an unknown object without explicit communication and unknown number of robots. Rob. Auton. Syst. 103, 122–133 (2018)CrossRefGoogle Scholar
  13. 13.
    Martinez-Rosas, J., Arteaga, M., Castillo-Sanchez, A.: Decentralized control of cooperative robots without velocity-force measurements. Automatica 42(2), 329–336 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Meghni, B., Dib, D., Azar, A.T., Saadoun, A.: Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints. Int. J. Dyn. Control 6(1), 369–383 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mekki, H., Boukhetala, D., Azar, A.T.: Sliding modes for fault tolerant control. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control systems, pp. 407–433. Springer International Publishing, Cham (2015)CrossRefGoogle Scholar
  16. 16.
    Rigatos, G., Siano, P.: A new nonlinear H-infinity feedback control approach to the problem of autonomous robot navigation. Intell. Ind. Syst. 1(3), 179–186 (2015)CrossRefGoogle Scholar
  17. 17.
    Rigatos, G., Siano, P., Raffo, G.: An H-infinity nonlinear control approach for multi-dof robotic manipulators. IFAC-PapersOnLine 49(12), 1406–1411 (2016)CrossRefGoogle Scholar
  18. 18.
    Rigatos, G., Siano, P., Raffo, G.: A nonlinear H-infinity control method for multi-dof robotic manipulators. Nonlinear Dyn. 88(1), 329–348 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sabattini, L., Secchi, C., Levratti, A., Fantuzzi, C.: Decentralized control of cooperative robotic systems for arbitrary setpoint tracking while avoiding collisions. IFAC-PapersOnLine 48(19), 57–62 (2015)CrossRefGoogle Scholar
  20. 20.
    Smida, M.B., Sakly, A., Vaidyanathan, S., Azar, A.T.: Control-based maximum power point tracking for a grid-connected hybrid renewable energy system optimized by particle swarm optimization. In: Azar, A.T., Vaidyanathan, S. (ed.) Advances in System Dynamics and Control, pp. 58–89. IGI Global (2018)Google Scholar
  21. 21.
    Soliman, M., Azar, A.T., Saleh, M.A., Ammar, H.H.: Path planning control for 3-omni fighting robot using PID and fuzzy logic controller. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., Tolba, M.F. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019), pp. 442–452. Springer International Publishing, Cham (2020)Google Scholar
  22. 22.
    Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2006)Google Scholar
  23. 23.
    Valk, L., Keviczky, T.: Distributed control of heterogeneous underactuated mechanical systems. IFAC-PapersOnLine 51(23), 325–330 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ahmad Taher Azar
    • 1
    • 2
    Email author
  • Fernando E. Serrano
    • 3
  • Ibrahim A. Hameed
    • 4
  • Nashwa Ahmad Kamal
    • 5
  • Sundarapandian Vaidyanathan
    • 6
  1. 1.College of EngineeringPrince Sultan UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Faculty of Computers and Artificial IntelligenceBenha UniversityBenhaEgypt
  3. 3.Universidad Tecnologica Centroamericana (UNITEC)TegucigalpaHonduras
  4. 4.Faculty of Information Technology and Electrical EngineeringDepartment of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU)ÅlesundNorway
  5. 5.Electrical Power and Machine Department, Faculty of EngineeringCairo UniversityGizaEgypt
  6. 6.Research and Development CentreVel Tech University AvadiChennaiIndia

Personalised recommendations