Direct Torque Control of Three Phase Asynchronous Motor with Sensorless Speed Estimator

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1058)


Direct torque control is undoubtedly a very promising solution to the problems of robustness and dynamics encountered in the directional flow vector control of the rotor of induction machines. Current research aims to improve the performance of this technique like the evolution of the switching frequency, the ripple on the torque, the flow and the current, and assists the cost of the sensor position. Therefore, this article presents a solution for the direct torque control without speed sensor. The simulations results showed a good dynamic performance of this control technique.


Direct Torque Control (DTC) Induction machine Speed estimator Torque control 


  1. 1.
    Abdelmalek, S., Rezazi, S., Azar, A.T.: Sensor faults detection and estimation for a DFIG equipped wind turbine. Energy Procedia 139, 3–9 (2017). Materials & Energy I (2015)Google Scholar
  2. 2.
    Abdelmalek, S., Azar, A.T., Dib, D.: A novel actuator fault-tolerant control strategy of dfig-based wind turbines using Takagi-Sugeno multiple models. Int. J. Control Autom. Syst. 16(3), 1415–1424 (2018)CrossRefGoogle Scholar
  3. 3.
    Ammar, A., Bourek, A., Benakcha, A.: Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control. ISA Trans. 67, 428–442 (2017)CrossRefGoogle Scholar
  4. 4.
    Arnanz, R., Miguel, L.J., Perán, J.R., Mendoza, A.: A modified direct torque control with fault tolerance. Control Eng. Pract. 19(9), 1056–1065 (2011). Special Section: DCDS 2009 – The 2nd IFAC Workshop on Dependable Control of Discrete SystemsGoogle Scholar
  5. 5.
    Ayrir, W., Ourahou, M., Hassouni, B.E., Haddi, A.: Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system. Math. Comput. Simul. (2018)Google Scholar
  6. 6.
    Carmeli, M., Mauri, M.: Direct torque control as variable structure control: existence conditions verification and analysis. Electr. Power Syst. Res. 81(6), 1188–1196 (2011)CrossRefGoogle Scholar
  7. 7.
    Casadei, D., Profumo, F., Serra, G., Tani, A.: FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans. Power Electron. 17(5), 779–787 (2002). Scholar
  8. 8.
    Depenbrock, M.: Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 3(4), 420–429 (1988). Scholar
  9. 9.
    Ghoudelbourk, S., Dib, D., Omeiri, A., Azar, A.T.: MPPT control in wind energy conversion systems and the application of fractional control (PI\(^\alpha \)) in pitch wind turbine. Int. J. Model. Ident. Control 26(2), 140–151 (2016)Google Scholar
  10. 10.
    Sudheer, H., Kodad, S.F., Sarvesh, B.: Improvements in direct torque control of induction motor for wide range of speed operation using fuzzy logic. J. Electr. Syst. Inf. Technol. 5(3), 813–828 (2018)Google Scholar
  11. 11.
    Hassan, A., Shehata, E.: High performance direct torque control schemes for an ipmsm drive. Electr. Power Syst. Res. 89, 171–182 (2012)CrossRefGoogle Scholar
  12. 12.
    Heinbokel, B.E., Lorenz. R.D.: Robustness evaluation of deadbeat, direct torque and flux control for induction machine drives. In: 2009 13th European Conference on Power Electronics and Applications, pp. 1–10 (2009)Google Scholar
  13. 13.
    Karpe, S., Deokar, S.A., Dixit, A.M.: Switching losses minimization by using direct torque control of induction motor. J. Electr. Syst. Inf. Technol. 4(1), 225–242 (2017)Google Scholar
  14. 14.
    Liu, H., Zhang, H.: A novel direct torque control method for brushless DC motors based on duty ratio control. J. Franklin Inst. 354(10), 4055–4072 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lokriti, A., Salhi, I., Doubabi, S.: IM direct torque control with no flux distortion and no static torque error. ISA Trans. 59, 256–267 (2015)CrossRefGoogle Scholar
  16. 16.
    Marino, P., D’Incecco, M., Visciano, N.: A comparison of direct torque control methodologies for induction motor. In: 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), vol. 2, p. 6 (2001).
  17. 17.
    Meghni, B., Dib, D., Azar, A.T.: A second-order sliding mode and fuzzy logic control to optimal energy management in wind turbine with battery storage. Neural Comput. Appl. 28(6), 1417–1434 (2017)CrossRefGoogle Scholar
  18. 18.
    Meghni, B., Dib, D., Azar, A.T., Saadoun, A.: Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints. Int. J. Dyn. Control 6(1), 369–383 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Naik, V.N., Panda, A., Singh, S.P.: A three-level fuzzy-2 DTC of induction motor drive using SVPWM. IEEE Trans. Industr. Electron. 63(3), 1467–1479 (2016). Scholar
  20. 20.
    Pimkumwong, N., Wang, M.S.: Full-order observer for direct torque control of induction motor based on constant V/F control technique. ISA Trans. 73, 189–200 (2018)CrossRefGoogle Scholar
  21. 21.
    Razik, H.: Handbook of Asynchronous Machines with Variable Speed. Wiley-ISTE (2013)Google Scholar
  22. 22.
    Smida, M.B., Sakly, A., Vaidyanathan, S., Azar, A.T.: Control-based maximum power point tracking for a grid-connected hybrid renewable energy system optimized by particle swarm optimization. In: Azar, A.T., Vaidyanathan, S. (eds.) Advances in System Dynamics and Control, pp. 58–89. IGI Global (2018)Google Scholar
  23. 23.
    Sutikno, T., Idris, N.R.N., Jidin, A.: A review of direct torque control of induction motors for sustainable reliability and energy efficient drives. Renew. Sustain. Energy Rev. 32, 548–558 (2014)CrossRefGoogle Scholar
  24. 24.
    Swierczynski, D., Wojcik, P., Kazmierkowski, M.P., Janaszek, M.: Direct torque controlled PWM inverter fed PMSM drive for public transport. In: 2008 10th IEEE International Workshop on Advanced Motion Control, pp 716–720 (2008).
  25. 25.
    Takahashi, I., Noguchi, T.: A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl. IA 22(5), 820–827 (1986). Scholar
  26. 26.
    Tazerart, F., Mokrani, Z., Rekioua, D., Rekioua, T.: Direct torque control implementation with losses minimization of induction motor for electric vehicle applications with high operating life of the battery. Int. J. Hydrogen Energy 40(39), 13827–13838 (2015)CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Niimura, N., Lorenz, R.D.: Real-time parameter identification and integration on deadbeat-direct torque and flux control (DB-DTFC) without inducing additional torque ripple. In: 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2184–2191 (2015).
  28. 28.
    Wildi, T.: Electrical Machines, Drives and Power Systems, 6th edn. Pearson (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Akli Mohand Oulhadj UniversityBouiraAlgeria
  2. 2.Electrical Engineering Advanced Technology Laboratory (LATAGE)Tizi OuzouAlgeria
  3. 3.College of EngineeringPrince Sultan UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Faculty of Computers and Artificial IntelligenceBenha UniversityBenhaEgypt
  5. 5.Electrical Power and Machine Department, Faculty of EngineeringCairo UniversityGizaEgypt

Personalised recommendations