Advertisement

PID Controller for 2-DOFs Twin Rotor MIMO System Tuned with Particle Swarm Optimization

  • Ahmad Taher AzarEmail author
  • Abdelrahman Sayed Sayed
  • Abdalla Saber Shahin
  • Hassan Ashraf Elkholy
  • Hossam Hassan Ammar
Conference paper
  • 250 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1058)

Abstract

This paper presents the modelling and control of a 2-DOFs Twin rotor multi input multi output (MIMO) system which is a laboratory setup resembling the dynamics of a helicopter. In this paper, the system modelling process is done using the common conventional mathematical model based on Euler-Lagrange method. The transfer functions of the model are used in the different tuning methods to reach the optimal PID gain values. The study uses conventional Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controllers to obtain a robust controller for the system. Particle Swarm optimization (PSO) technique was used to tune the controller parameters. A state space model is obtained considering some design assumptions and simplifications. Statistical measurement and convergence analysis is evaluated for the optimization of gain parameters of the PID controller for 2-DOF Twin rotor system using PSO by iteratively minimizing integral of squared error (ISE) and integral of time multiplied by the squared error (ITSE). The results are verified through simulations and experiments.

Keywords

Twin rotor multi input multi output system (TRMS) PID controller Particle Swarm Optimization (PSO) 

References

  1. 1.
    Ammar, H.H., Azar, A.T., Tembi, T.D., Tony, K., Sosa, A.: Design and implementation of fuzzy pid controller into multi agent smart library system prototype. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2018), pp. 127–137. Springer, Cham (2018)CrossRefGoogle Scholar
  2. 2.
    Azar, A.T., Serrano, F.E.: Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Comput. Appl. 25(5), 983–995 (2014)CrossRefGoogle Scholar
  3. 3.
    Azar, A.T., Serrano, F.E.: Adaptive Sliding Mode Control of the Furuta Pendulum, vol. 576, pp. 1–42. Springer, Cham (2015)Google Scholar
  4. 4.
    Azar, A.T., Ammar, H.H., Barakat, M.H., Saleh, M.A., Abdelwahed, M.A.: Self-balancing robot modeling and control using two degree of freedom PID controller. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp. 64–76. Springer, Cham (2019)Google Scholar
  5. 5.
    Azar, A.T., Hassan, H., Razali, M.S.A.B., de Brito Silva, G., Ali, H.R.: Two-degree of freedom proportional integral derivative (2-DOF PID) controller for robotic infusion stand. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp. 13–25. Springer, Cham (2019)Google Scholar
  6. 6.
    Cajo, R., Agila, W.: Evaluation of algorithms for linear and nonlinear PID control for twin rotor mimo system. In: 2015 Asia-Pacific Conference on Computer Aided System Engineering, pp. 214–219 (2015)Google Scholar
  7. 7.
    Chalupa, P., Přikryl, J., Novák, J.: Modelling of twin rotor mimo system. Procedia Eng. 100, 249–258 (2015). 25th DAAAM International Symposium on Intelligent Manufacturing and Automation (2014)Google Scholar
  8. 8.
    Chi, N.V.: Adaptive feedback linearization control for twin rotor multiple-input multiple-output system. Int. J. Control Autom. Syst. 15(3), 1267–1274 (2017)CrossRefGoogle Scholar
  9. 9.
    Chien, K., Hrones, J., Reswick, J.: On the automatic control of generalized passive systems. Trans. ASME 74(2), 175–185 (1952)Google Scholar
  10. 10.
    Dheeraj, K., Jacob, J., Nandakumar, M.P.: Direct adaptive neural control design for a class of nonlinear multi input multi output systems. IEEE Access 7(15), 424–15, 435 (2019)Google Scholar
  11. 11.
    Gorripotu, T.S., Samalla, H., Jagan Mohana Rao, C., Azar, A.T., Pelusi, D.: Tlbo algorithm optimized fractional-order PID controller for AGC of interconnected power system. In: Nayak, J., Abraham, A., Krishna, B.M., Chandra Sekhar, G.T., Das, A.K. (eds.) Soft Computing in Data Analytics, pp. 847–855. Springer, Singapore (2019)CrossRefGoogle Scholar
  12. 12.
    Haruna, A., Mohamed, Z., Efe, M., Basri, M.A.M.: Dual boundary conditional integral backstepping control of a twin rotor mimo system. J. Franklin Inst. 354(15), 6831–6854 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jahed, M., Farrokhi, M.: Robust adaptive fuzzy control of twin rotor mimo system. Soft. Comput. 17(10), 1847–1860 (2013)CrossRefGoogle Scholar
  14. 14.
    Juang, J.G., Liu, W.K., Lin, R.W.: A hybrid intelligent controller for a twin rotor mimo system and its hardware implementation. ISA Trans. 50(4), 609–619 (2011)CrossRefGoogle Scholar
  15. 15.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  16. 16.
    Messaoud, R.B.: Observer for nonlinear systems using mean value theorem and particle swarm optimization algorithm. ISA Trans. 85, 226–236 (2019)CrossRefGoogle Scholar
  17. 17.
    Mondal, S., Mahanta, C.: Adaptive second-order sliding mode controller for a twin rotor multi-input-multi-output system. IET Control Theory Appl. 6(14), 2157–2167 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pandey, V.K., Kar, I., Mahanta, C.: Control of twin-rotor mimo system using multiple models with second level adaptation. IFAC-PapersOnLine 49(1), 676–681 (2016). 4th IFAC Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2016Google Scholar
  19. 19.
    Raghavan, R., Thomas, S.: Mimo model predictive controller design for a twin rotor aerodynamic system. In: 2016 IEEE International Conference on Industrial Technology (ICIT), pp. 96–100 (2016)Google Scholar
  20. 20.
    Raghavan, R., Thomas, S.: Practically implementable model predictive controller for a twin rotor multi-input multi-output system. J. Control Autom. Electrical Syst. 28(3), 358–370 (2017)CrossRefGoogle Scholar
  21. 21.
    Rahideh, A., Bajodah, A., Shaheed, M.: Real time adaptive nonlinear model inversion control of a twin rotor mimo system using neural networks. Eng. Appl. Artif. Intell. 25(6), 1289–1297 (2012)CrossRefGoogle Scholar
  22. 22.
    Rashad, R., El-Badawy, A., Aboudonia, A.: Sliding mode disturbance observer-based control of a twin rotor mimo system. ISA Trans. 69, 166–174 (2017)CrossRefGoogle Scholar
  23. 23.
    Reynoso Meza, G., Blasco Ferragud, X., Sanchis Saez, J., Herrero Durá, J.M.: Multiobjective Optimization Design Procedure for Controller Tuning of a TRMS Process, pp. 201–213. Springer, Cham (2017)zbMATHGoogle Scholar
  24. 24.
    Sodhi, P., Kar, I.: Adaptive backstepping control for a twin rotor mimo system. IFAC Proc. 47(1), 740–747 (2014). 3rd International Conference on Advances in Control and Optimization of Dynamical Systems (2014)Google Scholar
  25. 25.
    Tao, C., Taur, J., Chang, Y., Chang, C.: A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-input-multi-output system. IEEE Trans. Fuzzy Syst. 18(5), 893–905 (2010)CrossRefGoogle Scholar
  26. 26.
    Tastemirov, A., Lecchini-Visintini, A., Morales-Viviescas, R.M.: Complete dynamic model of the twin rotor mimo system (TRMS) with experimental validation. Control Eng. Pract. 66, 89–98 (2017)CrossRefGoogle Scholar
  27. 27.
    Tiwalkar, R.G., Vanamane, S.S., Karvekar, S.S., Velhal, S.B.: Model predictive controller for position control of twin rotor mimo system. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 952–957 (2017)Google Scholar
  28. 28.
    Wang, F.S., Juang, W.S., Chan, C.T.: Optimal tuning of PID controllers for single and cascade control loops. Chem. Eng. Commun. 132(1), 15–34 (1995)CrossRefGoogle Scholar
  29. 29.
    Ziegler, J., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64(8), 759–768 (1942)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ahmad Taher Azar
    • 1
    • 2
    Email author
  • Abdelrahman Sayed Sayed
    • 3
  • Abdalla Saber Shahin
    • 3
  • Hassan Ashraf Elkholy
    • 3
  • Hossam Hassan Ammar
    • 3
  1. 1.College of EngineeringPrince Sultan UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Faculty of Computers and Artificial IntelligenceBenha UniversityBenhaEgypt
  3. 3.School of Engineering and Applied SciencesNile University Campus6th of October City, GizaEgypt

Personalised recommendations