Advertisement

Synchronization of Fractional-Order Discrete-Time Chaotic Systems

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1058)

Abstract

Recently, synchronization in discrete-time chaotic systems attract more and more attentions and has been extensively studied, due to its potential applications in secure communication. This work is concerned with the synchronization of fractional-order discrete-time chaotic systems with different dimensions. In particular, through appropriate nonlinear control, matrix projective synchronization (MPS) can be achieved between different dimensional fractional-order map. Numerical examples and computer simulations are used to show the effectiveness and the feasibility of the proposed synchronization schemes.

Keywords

Chaos Discrete-time fractional systems Matrix projective synchronization Different dimensions Lyapunov stability analysis Chaotic synchronization 

References

  1. 1.
    Abdeljawad, T., Baleanu, D., Jarad, F., Agarwal, R.P.: Fractional sums and differences with binomial coefficients. Discrete Dyn. Nature Soc. 2013, 1–6 (2013). (Article ID 104173)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Anastassiou, G.A.: Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Modell. 52(3), 556–566 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Azar, A.T., Vaidyanathan, S., Ouannas, A.: Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol. 688. Springer, Germany (2017)CrossRefGoogle Scholar
  4. 4.
    Azar, A.T., Adele, N.M., Alain, K.S.T., Kengne, R., Bertrand, F.H.: Multistability analysis and function projective synchronization in relay coupled oscillators. Complexity 2018, 1–12 (2018). (Article ID 3286070)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Azar, A.T., Ouannas, A., Singh, S.: Control of New Type of Fractional Chaos Synchronization, pp. 47–56. Springer, Cham (2018b)Google Scholar
  6. 6.
    Baleanu, D., Wu, G., Bai, Y., Chen, F.: Stability analysis of caputo-like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul. 48, 520–530 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bendoukha, S., Ouannas, A., Wang, X., Khennaoui, A.A., Pham, V.T., Grassi, G., Huynh, V.V.: The co-existence of different synchronization types in fractional-order discrete-time chaotic systems with non-identical dimensions and orders. Entropy 20(9), 710 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cermak, J., Gyori, I., Nechvatal, L.: On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 18(3), 651–672 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Edelman, M.: On stability of fixed points and chaos in fractional systems. Chaos Interdiscip. J. Nonlinear Sci. 28(2), 023, 112 (2018).  https://doi.org/10.1063/1.5016437
  10. 10.
    Elaydi, S.N.: Discrete Chaos: With Applications in Science and Engineering. Chapman and Hall/CRC, Boca Raton (2007)Google Scholar
  11. 11.
    Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Cham (2015)CrossRefGoogle Scholar
  12. 12.
    Hu, M., Xu, Z., Zhang, R.: Full state hybrid projective synchronization of a general class of chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 13(4), 782–789 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Huang, C., Cao, J.: Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system. Stat. Mech. Appl. Phys. A 473(C), 262–275 (2017)Google Scholar
  14. 14.
    Huynh, V.V., Ouannas, A., Wang, X., Pham, V.T., Nguyen, X.Q., Alsaadi, F.E.: Chaotic map with no fixed points: entropy, implementation and control. Entropy 21(3), 279 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jouini, L., Ouannas, A., Khennaoui, A.A., Wang, X., Grassi, G., Pham, V.T.: The fractional form of a new three-dimensional generalized hénon map. Adv. Diff. Equ. 1, 122 (2019)CrossRefGoogle Scholar
  16. 16.
    Kassim, S., Hamiche, H., Djennoune, S., Bettayeb, M.: A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems. Nonlinear Dyn. 88(4), 2473–2489 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khan, A., Budhraja, M., Ibraheem, A.: Multi-switching dual compound synchronization of chaotic systems. Chin. J. Phys. 56(1), 171–179 (2018)CrossRefGoogle Scholar
  18. 18.
    Khan, A., Singh, S., Azar, A.T.: Combination-combination anti-synchronization of four fractional order identical hyperchaotic systems. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., F Tolba, M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 406–414. Springer, Cham (2020)Google Scholar
  19. 19.
    Khennaoui, A.A., Ouannas, A., Bendoukha, S., Grassi, G., Wang, X., Pham, V.T.: Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions. Adv. Differ. Equ. 1, 303 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Khennaoui, A.A., Ouannas, A., Bendoukha, S., Grassi, G., Lozi, R.P., Pham, V.T.: On fractional-order discrete-time systems: Chaos, stabilization and synchronization. Chaos, Solitons & Fractals 119, 150–162 (2019)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Luo, Z., Su, M., Sun, Y., Wang, H., Yuan, W.: Stability analysis and concept extension of harmonic decoupling network for the three-phase grid synchronization systems. Int. J. Electr. Power Energy Syst. 89, 1–10 (2017)CrossRefGoogle Scholar
  22. 22.
    Ma, S., Yao, Z., Zhang, Y., Ma, J.: Phase synchronization and lock between memristive circuits under field coupling. AEU - Int. J. Electron. Commun. 105, 177–185 (2019)CrossRefGoogle Scholar
  23. 23.
    Megherbi, O., Hamiche, H., Djennoune, S., Bettayeb, M.: A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems. Nonlinear Dyn. 90(3), 1519–1533 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ouannas, A., Abu-Saris, R.: On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems. J. Chaos 2016, 1–7 (2016). (Article ID 4912520)CrossRefGoogle Scholar
  25. 25.
    Ouannas, A., Mahmoud, E.E.: Inverse matrix projective synchronization for discrete chaotic systems with different dimensions. J. Comput. Intell. Electron. Syst. 3(3), 188–192 (2014)CrossRefGoogle Scholar
  26. 26.
    Ouannas, A., Odibat, Z.: Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dyn. 81(1), 765–771 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ouannas, A., Azar, A.T., Abu-Saris, R.: A new type of hybrid synchronization between arbitrary hyperchaotic maps. Int. J. Mach. Learn. Cybernet. 8(6), 1887–1894 (2017a)CrossRefGoogle Scholar
  28. 28.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: A new fractional hybrid chaos synchronisation. Int. J. Modell. Ident. Control 27(4), 314–322 (2017).  https://doi.org/10.1504/IJMIC.2017.084719CrossRefzbMATHGoogle Scholar
  29. 29.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: New hybrid synchronization schemes based on coexistence of various types of synchronization between master-slave hyperchaotic systems. Int. J. Comput. Appl. Technol. 55(2), 112–120 (2017c)CrossRefGoogle Scholar
  30. 30.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: A robust method for new fractional hybrid chaos synchronization. Math. Methods Appl. Sci. 40(5), 1804–1812 (2017d). mma.4099MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S.: Fractional inverse generalized chaos synchronization between different dimensional systems. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (eds.) Fractional Order Control and Synchronization of Chaotic Systems, pp. 525–551. Springer, Cham (2017e)CrossRefGoogle Scholar
  32. 32.
    Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S.: On new fractional inverse matrix projective synchronization schemes. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (eds.) Fractional Order Control and Synchronization of Chaotic Systems, pp. 497–524. Springer, Cham (2017f)CrossRefGoogle Scholar
  33. 33.
    Ouannas, A., Khennaoui, A.A., Grassi, G., Bendoukha, S.: On the Q-S chaos synchronization of fractional-order discrete-time systems: general method and examples. Discrete Dyn. Nature Soc. 2018, 1–8 (2018). (Article ID 2950357)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ouannas, A., Grassi, G., Azar, A.T., Gasri, A.: A new control scheme for hybrid chaos synchronization. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp 108–116. Springer, Cham (2019)Google Scholar
  35. 35.
    Ouannas, A., Grassi, G., Azar, A.T., Singh, S.: New control schemes for fractional chaos synchronization. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp. 52–63. Springer, Cham (2019)CrossRefGoogle Scholar
  36. 36.
    Ouannas, A., Khennaoui, A.A., Zehrour, O., Bendoukha, S., Grassi, G., Pham, V.T.: Synchronisation of integer-order and fractional-order discrete-time chaotic systems. Pramana 92(4), 52 (2019c)CrossRefGoogle Scholar
  37. 37.
    Ounnas, A., Azar, A.T., Radwan, A.G.: On inverse problem of generalized synchronization between different dimensional integer-order and fractional-order chaotic systems. In: 2016 28th International Conference on Microelectronics (ICM), pp. 193–196 (2016)Google Scholar
  38. 38.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Prajapati, N., Khan, A., Khattar, D.: On multi switching compound synchronization of non identical chaotic systems. Chin. J. Phys. 56(4), 1656–1666 (2018)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Razminia, A.: Full state hybrid projective synchronization of a novel incommensurate fractional order hyperchaotic system using adaptive mechanism. Indian J. Phys. 87(2), 161–167 (2013)CrossRefGoogle Scholar
  41. 41.
    Razminia, A., Dumitru, B.: Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics 23, 873–879 (2013)CrossRefGoogle Scholar
  42. 42.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2001)zbMATHGoogle Scholar
  43. 43.
    Vaidyanathan, S., Azar, A.T., Boulkroune, A.: A novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive synchronisation. Int. J. Autom. Control 12(1), 5–26 (2018a)CrossRefGoogle Scholar
  44. 44.
    Vaidyanathan, S., Azar, A.T., Sambas, A, Singh, S., Alain, K.S.T., Serrano, F.E.: A novel hyperchaotic system with adaptive control, synchronization, and circuit simulation. In: Advances in System Dynamics and Control. IGI Global, USA (2018)Google Scholar
  45. 45.
    Vaidyanathan, S., Jafari, S., Pham, V.T., Azar, A.T., Alsaadi, F.E.: A 4-D chaotic hyperjerk system with a hidden attractor, adaptive backstepping control and circuit design. Arch. Control Sci. 28(2), 239–254 (2018c)Google Scholar
  46. 46.
    Wu, G.C., Baleanu, D.: Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 80(4), 1697–1703 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.LAMIS Laboratory, Department of MathematicsUniversity of Larbi TebessiTebessaAlgeria
  2. 2.Dipartimento Ingegneria InnovazioneUniversità del SalentoLecceItaly
  3. 3.College of EngineeringPrince Sultan UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Faculty of Computers and Artificial IntelligenceBenha UniversityBenhaEgypt
  5. 5.Departement of Mathematics and Computer SciencesUniversity of Larbi Ben M’hidiOum El BouaghiAlgeria
  6. 6.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations