Advertisement

Chaotic Control in Fractional-Order Discrete-Time Systems

  • Adel Ouannas
  • Giuseppe Grassi
  • Ahmad Taher AzarEmail author
  • Amina Aicha Khennaouia
  • Viet-Thanh Pham
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1058)

Abstract

In recent years, fractional discrete-time calculus has become somewhat of a hot topic. A few researchers have attempted to develop a framework for the subject and investigate the stability and application of fractional discrete-time chaotic system. In this study, a general method to control fractional discrete-time chaotic systems is proposed. Based on Lyapunov stability theory of fractional-order discrete-time systems, a robust scheme of control is introduced. Numerical results are presented to confirm the findings of the study.

Keywords

Chaos Discrete fractional systems Lyapunov stability analysis Chaotic control 

References

  1. 1.
    Abdeljawad, T., Baleanu, D., Jarad, F., Agarwal, R.P.: Fractional sums and differences with binomial coefficients. Discrete Dyn. Nat. Soc. 2013, 1–6 (2013). Article ID 104173MathSciNetzbMATHGoogle Scholar
  2. 2.
    Anastassiou, G.A.: Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 52(3), 556–566 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Azar, A.T., Vaidyanathan, S.: Advances in Chaos Theory and Intelligent Control, vol. 337. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  4. 4.
    Azar, A.T., Vaidyanathan, S., Ouannas, A.: Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol. 688. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  5. 5.
    Baleanu, D., Wu, G., Bai, Y., Chen, F.: Stability analysis of caputo–like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul. 48, 520–530 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bozoki, Z.: Chaos theory and power spectrum analysis in computerized cardiotocography. Eur. J. Obstet. Gynecol. Reprod. Biol. 71(2), 163–168 (1997)CrossRefGoogle Scholar
  7. 7.
    Elaydi, S.N.: Discrete Chaos: With Applications in Science and Engineering. Chapman and Hall/CRC, Boca Raton (2007)Google Scholar
  8. 8.
    Frey, D.R.: Chaotic digital encoding: an approach to secure communication. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 40(10), 660–666 (1993)CrossRefGoogle Scholar
  9. 9.
    Garfinkel, A.: Controlling cardiac chaos. Science (1992)Google Scholar
  10. 10.
    Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Cham (2015)CrossRefGoogle Scholar
  11. 11.
    Jouini, L., Ouannas, A., Khennaoui, A.A., Wang, X., Grassi, G., Pham, V.T.: The fractional form of a new three-dimensional generalized hénon map. Adv. Differ. Equ. 1, 122 (2019)CrossRefGoogle Scholar
  12. 12.
    Kassim, S., Hamiche, H., Djennoune, S., Bettayeb, M.: A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems. Nonlinear Dyn. 88(4), 2473–2489 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Khan, A., Singh, S., Azar, A.T.: Combination-combination anti-synchronization of four fractional order identical hyperchaotic systems. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., Tolba, F.M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 406–414. Springer, Cham (2020)Google Scholar
  14. 14.
    Khan, A., Singh, S., Azar, A.T.: Synchronization between a novel integer-order hyperchaotic system and a fractional-order hyperchaotic system using tracking control. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., Tolba, F.M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 382–391. Springer, Cham (2020)Google Scholar
  15. 15.
    Khennaoui, A.A., Ouannas, A., Bendoukha, S., Grassi, G., Wang, X., Pham, V.T.: Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions. Adv. Differ. Equ. 1, 303 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lau, F., Tse, C.K.: Chaos-Based Digital Communication Systems. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefGoogle Scholar
  18. 18.
    Megherbi, O., Hamiche, H., Djennoune, S., Bettayeb, M.: A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems. Nonlinear Dyn. 90(3), 1519–1533 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: New hybrid synchronization schemes based on coexistence of various types of synchronization between master-slave hyperchaotic systems. Int. J. Comput. Appl. Technol. 55(2), 112–120 (2017)CrossRefGoogle Scholar
  21. 21.
    Ouannas, A., Grassi, G., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.T., Ziar, T., Kyprianidis, I.M., Stouboulos, I.N.: Dead-beat synchronization control in discrete-time chaotic systems. In: 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4 (2017)Google Scholar
  22. 22.
    Ouannas, A., Odibat, Z., Shawagfeh, N., Alsaedi, A., Ahmad, B.: Universal chaos synchronization control laws for general quadratic discrete systems. Appl. Math. Model. 45, 636–641 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ouannas, A., Azar, A.T., Ziar, T.: Control of continuous-time chaotic (hyperchaotic) systems: F-M synchronisation. Int. J. Automa. Control (2018)Google Scholar
  24. 24.
    Ouannas, A., Grassi, G., Karouma, A., Ziar, T., Wang, X., Pham, V.: New type of chaos synchronization in discrete-time systems: the F-M synchronization. Open Phys. 16, 174–182 (2018)CrossRefGoogle Scholar
  25. 25.
    Ouannas, A., Khennaoui, A.A., Grassi, G., Bendoukha, S.: On the Q-S chaos synchronization of fractional-order discrete-time systems: general method and examples. Discrete Dyn. Nat. Soc. 2018, 1–8 (2018). Article ID 2950357MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ouannas, A., Grassi, G., Azar, A.T., Gasri, A.: A new control scheme for hybrid chaos synchronization. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp. 108–116. Springer, Cham (2019)Google Scholar
  27. 27.
    Ouannas, A., Grassi, G., Azar, A.T., Singh, S.: New control schemes for fractional chaos synchronization. In: Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, pp. 52–63. Springer, Cham (2019)Google Scholar
  28. 28.
    Ouannas, A., Khennaoui, A.A., Zehrour, O., Bendoukha, S., Grassi, G., Pham, V.T.: Synchronisation of integer-order and fractional-order discrete-time chaotic systems. Pramana 92(4), 52 (2019)CrossRefGoogle Scholar
  29. 29.
    Ouannas, A., Grassi, G., Azar, A.T.: Fractional-order control scheme for Q-S chaos synchronization. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., Tolba, F.M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 434–441. Springer, Cham (2020)Google Scholar
  30. 30.
    Ouannas, A., Grassi, G., Azar, A.T.: A new generalized synchronization scheme to control fractional chaotic systems with non-identical dimensions and different orders. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., Tolba, F.M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 415–424. Springer, Cham (2020)Google Scholar
  31. 31.
    Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L., et al.: Controlling chaos in the brain. Nature 370(6491), 615–620 (1994)CrossRefGoogle Scholar
  32. 32.
    Shukla, M.K., Sharma, B.B.: Stabilization of Fractional Order Discrete Chaotic Systems, pp. 431–445. Springer, Cham (2017)CrossRefGoogle Scholar
  33. 33.
    Sivakumar, B.: Chaos theory in hydrology: important issues and interpretations. J. Hydrol. 227(14), 1–20 (2000)CrossRefGoogle Scholar
  34. 34.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2001)zbMATHGoogle Scholar
  35. 35.
    Vaidyanathan, S., Jafari, S., Pham, V.T., Azar, A.T., Alsaadi, F.E.: A 4-D chaotic hyperjerk system with a hidden attractor, adaptive backstepping control and circuit design. Arch. Control Sci. 28(2), 239–254 (2018)Google Scholar
  36. 36.
    Wu, G.C., Baleanu, D.: Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 80(4), 1697–1703 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Xiao-hui, Z., Ke, S.: The control action of the periodic perturbation on a hyperchaotic system. Acta Physica Sinica (Overseas Ed.) 8(9), 651 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Adel Ouannas
    • 1
  • Giuseppe Grassi
    • 2
  • Ahmad Taher Azar
    • 3
    • 4
    Email author
  • Amina Aicha Khennaouia
    • 5
  • Viet-Thanh Pham
    • 6
  1. 1.LAMIS Laboratory, Department of MathematicsUniversity of Larbi TebessiTebessaAlgeria
  2. 2.Dipartimento Ingegneria InnovazioneUniversità del SalentoLecceItaly
  3. 3.College of EngineeringPrince Sultan UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Faculty of computers and Artificial IntelligenceBenha UniversityBenhaEgypt
  5. 5.Departement of Mathematics and Computer SciencesUniversity of Larbi Ben M’hidiOum El BouaghiAlgeria
  6. 6.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations