Advertisement

PSO-Based Adaptive Perturb and Observe MPPT Technique for Photovoltaic Systems

  • Nashwa Ahmad Kamal
  • Ahmad Taher AzarEmail author
  • Ghada Said Elbasuony
  • Khaled Mohamad Almustafa
  • Dhafer Almakhles
Conference paper
  • 249 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1058)

Abstract

The classical method of perturb and observe (P&O) is mostly utilized because of it is simple technique, ease of implementation and low cost. Although, it has high oscillations around maximum power point (MPP) at steady state due to perturbation and challenge between step size and the convergence time. To avoid the drawbacks of classical P&O methods, this paper presents adaptive P&O using optimized proportional integral (PI) controller by particle swarm optimization (PSO) algorithm. To evaluate the proposed method, a PV system model is designed with different scenarios under various weather conditions. For each scenario, simulations are carried out and the results are compared with the other classical P&O MPPT methods. The results revealed that the proposed PSO-PI-P&O MPPT method improved the tracking performance, response to the fast changing weather conditions and also has less oscillation around MPP as compared to the classical P&O methods.

Keywords

Photovoltaic systems Renewable energy control Maximum power point tracking Particle Swarm Optimization 

Notes

Acknowledgement

The authors would like to thank Prince Sultan University, Riyadh, KSA for supporting this work.

References

  1. 1.
    Abdelsalam, A.K., Massoud, A.M., Ahmed, S., Enjeti, P.N.: High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans. Power Electron. 26(4), 1010–1021 (2011)CrossRefGoogle Scholar
  2. 2.
    Ahmad, R., Murtaza, A.F., Sher, H.A.: Power tracking techniques for efficient operation of photovoltaic array in solar applications - a review. Renew. Sustain. Energy Rev. 101, 82–102 (2019)CrossRefGoogle Scholar
  3. 3.
    Ahmed, J., Salam, Z.: An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions. IEEE Trans. Sustain. Energ. 9(3), 1487–1496 (2018)CrossRefGoogle Scholar
  4. 4.
    Carannante, G., Fraddanno, C., Pagano, M., Piegari, L.: Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation. IEEE Trans. Industr. Electron. 56(11), 4374–4380 (2009)CrossRefGoogle Scholar
  5. 5.
    Daraban, S., Petreus, D., Morel, C.: A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading. Energy 74, 374–388 (2014)CrossRefGoogle Scholar
  6. 6.
    Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Elsevier, Amsterdam (2001)Google Scholar
  7. 7.
    Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)CrossRefGoogle Scholar
  8. 8.
    Ghoudelbourk, S., Dib, D., Omeiri, A., Azar, A.T.: MPPT control in wind energy conversion systems and the application of fractional control (pi\(\alpha \)) in pitch wind turbine. Int. J. Model. Ident. Control 26(2), 140–151 (2016)Google Scholar
  9. 9.
    Hart, G., Branz, H., Cox, C.: Experimental tests of open-loop maximum-power-point tracking techniques for photovoltaic arrays. Sol. Cells 13(2), 185–195 (1984)CrossRefGoogle Scholar
  10. 10.
    (IRENA) IREA: Renewable energy statistics 2018. Technical report (2018). https://www.irena.org/publications/2018/Jul/Renewable-Energy-Statistics-2018
  11. 11.
    Ishaque, K., Salam, Z.: An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol. Energy 85(9), 2349–2359 (2011)CrossRefGoogle Scholar
  12. 12.
    Ishaque, K., Salam, Z., Syafaruddin: A comprehensive MATLAB simulink PV system simulator with partial shading capability based on two-diode model. Sol. Energy 85(9), 2217–2227 (2011)Google Scholar
  13. 13.
    Jiang, L.L., Srivatsan, R., Maskell, D.L.: Computational intelligence techniques for maximum power point tracking in PV systems: a review. Renew. Sustain. Energy Rev. 85, 14–45 (2018)CrossRefGoogle Scholar
  14. 14.
    Jordehi, A.R.: Parameter estimation of solar photovoltaic (PV) cells: a review. Renew. Sustain. Energy Rev. 61, 354–371 (2016)CrossRefGoogle Scholar
  15. 15.
    Jordehi, A.R., Jasni, J.: Parameter selection in particle swarm optimisation: a survey. J. Exp. Theor. Artif. Intell. 25(4), 527–542 (2013).  https://doi.org/10.1080/0952813X.2013.782348CrossRefGoogle Scholar
  16. 16.
    Kamal, N.A., Ibrahim, A.M.: Conventional, intelligent, and fractional-order control method for maximum power point tracking of a photovoltaic system: a review. In: Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.) Fractional Order Systems, Advances in Nonlinear Dynamics and Chaos (ANDC), pp. 603–671. Academic Press, Cambridge (2018). Chap 20Google Scholar
  17. 17.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  18. 18.
    Kollimalla, S.K., Mishra, M.K.: A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance. IEEE Trans. Energy Convers. 29(3), 602–610 (2014)CrossRefGoogle Scholar
  19. 19.
    Kulaksız, A.A., Akkaya, R.: A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive. Sol. Energy 86(9), 2366–2375 (2012)CrossRefGoogle Scholar
  20. 20.
    Lin, W.M., Hong, C.M., Chen, C.H.: Neural-network-based MPPT control of a stand-alone hybrid power generation system. IEEE Trans. Power Electron. 26(12), 3571–3581 (2011)CrossRefGoogle Scholar
  21. 21.
    Meghni, B., Dib, D., Azar, A.T.: A second-order sliding mode and fuzzy logic control to optimal energy management in wind turbine with battery storage. Neural Comput. Appl. 28(6), 1417–1434 (2017a)CrossRefGoogle Scholar
  22. 22.
    Meghni, B., Dib, D., Azar, A.T., Ghoudelbourk, S., Saadoun, A.: Robust adaptive supervisory fractional order controller for optimal energy management in wind turbine with battery storage. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (eds.) Fractional Order Control and Synchronization of Chaotic Systems, pp. 165–202. Springer International Publishing, Cham (2017b)CrossRefGoogle Scholar
  23. 23.
    Meghni, B., Dib, D., Azar, A.T., Saadoun, A.: Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints. Int. J. Dyn. Control 6(1), 369–383 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mellit, A., Rezzouk, H., Messai, A., Medjahed, B.: FPGA-based real time implementation of MPPT-controller for photovoltaic systems. Renewable Energy 36(5), 1652–1661 (2011)CrossRefGoogle Scholar
  25. 25.
    Moriarty, P., Honnery, D.: 6 - global renewable energy resources and use in 2050. In: Letcher, T.M. (ed.) Managing Global Warming, pp. 221–235. Academic Press, Cambridge (2019)CrossRefGoogle Scholar
  26. 26.
    Noguchi, T., Togashi, S., Nakamoto, R.: Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system. IEEE Trans. Industr. Electron. 49(1), 217–223 (2002)CrossRefGoogle Scholar
  27. 27.
    Ozdemir, S., Altin, N., Sefa, I.: Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter. Int. J. Hydrogen Energy 42(28), 17748–17759 (2017). Special Issue on the 4th European Conference on Renewable Energy Systems (ECRES 2016), Istanbul, Turkey, 28–31 August 2016.CrossRefGoogle Scholar
  28. 28.
    Rezk, H., Fathy, A., Abdelaziz, A.Y.: A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions. Renew. Sustain. Energy Rev. 74, 377–386 (2017)CrossRefGoogle Scholar
  29. 29.
    Smida, M.B., Sakly, A., Vaidyanathan, S., Azar, A.T.: Control-based maximum power point tracking for a grid-connected hybrid renewable energy system optimized by particle swarm optimization. In: Azar, A.T., Vaidyanathan, S. (eds.) Advances in System Dynamics and Control, pp. 58–89. IGI Global, Hershey (2018)CrossRefGoogle Scholar
  30. 30.
    Tan, Y.T., Kirschen, D.S., Jenkins, N.: A model of PV generation suitable for stability analysis. IEEE Trans. Energy Convers. 19(4), 748–755 (2004)CrossRefGoogle Scholar
  31. 31.
    Villalva, M.G., Gazoli, J.R., Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009)CrossRefGoogle Scholar
  32. 32.
    Whiting, K., Carmona, L.G., Sousa, T.: A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion. Renew. Sustain. Energy Rev. 76, 202–211 (2017)CrossRefGoogle Scholar
  33. 33.
    Yetayew, T.T., Jyothsna, T.R.: Evaluation of fuzzy logic based maximum power point tracking for photovoltaic power system. In: 2015 IEEE Power, Communication and Information Technology Conference (PCITC), pp. 217–222 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nashwa Ahmad Kamal
    • 1
  • Ahmad Taher Azar
    • 2
    • 3
    Email author
  • Ghada Said Elbasuony
    • 1
  • Khaled Mohamad Almustafa
    • 4
  • Dhafer Almakhles
    • 2
  1. 1.Electrical Power and Machine Department, Faculty of EngineeringCairo UniversityGizaEgypt
  2. 2.College of EngineeringPrince Sultan UniversityRiyadhKingdom of Saudi Arabia
  3. 3.Faculty of Computers and Artificial IntelligenceBenha UniversityBenhaEgypt
  4. 4.College of Computer Science and Information Systems (CCIS), Prince Sultan UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations