Skip to main content

Rashba-Like Spin-Split Surface States

  • Chapter
  • First Online:
Book cover Angle Resolved Photoemission Spectroscopy of Delafossite Metals

Part of the book series: Springer Theses ((Springer Theses))

  • 549 Accesses

Abstract

The surfaces of PtCoO2 and PdCoO2 support states with properties very different from those of the bulk, as discussed in the Introduction (Sect. 1.2.1), and shown in Sect. 2.6.5 on the example of PdCoO2. The surface states found on their CoO2-terminated surfaces are the topic of this chapter, which I will start by describing the experimental observations, and the conclusions that can be drawn based on the experiments and symmetry arguments alone (Sect. 6.1). I will go on to introduce the density functional theory (DFT) calculations of these surface states performed by Helge Rosner, compare them to the experiment, and show how this comparison was necessary to correctly interpret the calculations, but also to motivate further measurements (Sect. 6.2). Both the experiment and the first principles calculations show that the surface states exhibit a spin-splitting that is unusually large for a system based on 3d orbitals, motivating a careful examination of the basic principles underlying the appearance of spin-split band structures in solids (Sects. 6.36.5). This analysis, although motivated by our measurements, in not at all specific to delafossites. In contrast, it outlines a general framework which can be used to think about systems exhibiting spin-splitting. In Sect. 6.4 I work with a didactic model based on p-orbitals, as originally introduced by Petersen and Hedegård [1], which is very useful for establishing and illustrating the main principles behind spin-splitting. In Sect. 6.5 I discuss the generality of the conclusions drawn from the p-orbital model, and finally, in Sect. 6.6 I extend the analysis to a tight binding model whose ingredients are directly relevant to the CoO2 layer of the delafossites. I show how this model gives a new perspective on the density functional theory calculations, and how its predictions were confirmed by measurements on a new compound, PdRhO2 (Sect. 6.7). A reader more interested in the results specifically relevant for the delafossite surface states than in the general analysis of the development of spin splitting and orbital angular momentum in solids may prefer to jump directly from Sects. 6.2 to 6.6, and back-refer to Sects. 6.36.5 as necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The synchrotron radiation is not continuous, but arrives in pulses, as determined by electron bunches in the synchrotron ring (see Sect. 2.6.1). The relevant parameter for space charge is actually the number of photons per pulse, rather than the average intensity. However, from the point of view of the user, tuning the number of photons per pulse is equivalent to tuning the intensity.

  2. 2.

    This is actually half the value that would be obtained by simply combining the Coulomb field (Eq. 6.9) and the general expression for the coupling of a moving spin and static electric field (Eq. 6.8). The additional factor of 1/2 is a consequence of a relativistic kinematic effect called the Thomas correction, which is related to the fact the energy is evaluated in a rotating coordinate system [11, 12].

  3. 3.

    This is in fact the origin of the term ‘fine structure constant’; while atomic spectra are dominantly governed by the Coloumb interaction, making Rydberg (\(1 \,\mathrm {Ry}=13.6 \,\mathrm {eV}\)) the relevant energy scale, the spin-orbit interaction gives rise to their fine structure, with level splittings reduced by the factor of \(\alpha ^{2}\).

  4. 4.

    The simplified notation in this section is slightly different from the one used in Sect. 3.1, which is consistent with Reference [18]. They are related by: \(t_{\alpha \beta }\left( \vartheta _{ij}\right) =E_{\alpha ,\beta }\left( \cos \left( \vartheta _{ij}\right) ,\sin \left( \vartheta _{ij}\right) ,0\right) \).

  5. 5.

    These can be obtained from the more standard form in the basis of spherical harmonics by the coordinate transformation given in Appendix E.1.

  6. 6.

    See Sect. D.3 for a comparison of the numerical values extracted from all the compounds.

References

  1. Petersen L, Hedegård P (2000) A simple tight-binding model of spin-orbit splitting of sp-derived surface states. Surf Sci 459(1–2):49–56

    Article  ADS  Google Scholar 

  2. Noh H-J, Jeong J, Jeong J, Cho E-J, Kim S, Kim K, Min B, Kim H-D (2009) Anisotropic electric conductivity of delafossite PdCoO\(_{\rm 2}\) studied by angle-resolved photoemission spectroscopy. Phys Rev Lett 102(25):256404

    Article  ADS  Google Scholar 

  3. Zhou XJ, Wannberg B, Yang WL, Brouet V, Sun Z, Douglas JF, Dessau D, Hussain Z, Shen ZX (2005) Space charge effect and mirror charge effect in photoemission spectroscopy. J Electron Spectrosc Relat Phenom 142(1):27–38

    Article  Google Scholar 

  4. Bigi C, Das PK, Benedetti D, Salvador F, Krizmancic D, Sergo R, Martin A, Panaccione G, Rossi G, Fujii J, Vobornik I (2017) Very efficient spin polarization analysis (VESPA): new exchange scattering-based setup for spin-resolved ARPES at APE-NFFA beamline at Elettra. J Synchrotron Radiat 24(4):750–756

    Article  Google Scholar 

  5. Haverkort MW (2005) Spin and orbital degrees of freedom in transition metal oxides and oxide thin films studied by soft x-ray absorption spectroscopy. PhD thesis, University of Cologne

    Google Scholar 

  6. Tamai A, Meevasana W, King PDC, Nicholson CW, de la Torre A, Rozbicki E, Baumberger F (2013) Spin-orbit splitting of the Shockley surface state on Cu(111). Phys Rev B 87(7):075113

    Article  ADS  Google Scholar 

  7. Ishizaka K, Bahramy MS, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R, Kaneko Y, Onose Y, Tokura Y (2011) Giant Rashba-type spin splitting in bulk BiTeI. Nat Mater 10(7):521–526

    Article  ADS  Google Scholar 

  8. Ast CR, Henk J, Ernst A, Moreschini L, Falub MC, Pacile D, Bruno P, Kern K, Grioni M (2007) Giant spin splitting through surface alloying. Phys Rev Lett 98(18):186807

    Google Scholar 

  9. Iwasawa H, Yoshida Y, Hase I, Shimada K, Namatame H, Taniguchi M, Aiura Y (2013) True bosonic coupling strength in strongly correlated superconductors. Sci Rep 3

    Google Scholar 

  10. LaShell S, McDougall BA, Jensen E (1996) Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys Rev Lett 77(16):3419–3422

    Article  ADS  Google Scholar 

  11. Sakurai JJ (1993) Modern quantum mechanics, revised edition, Addison Wesley, Reading

    Google Scholar 

  12. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  13. Condon EU, Shortley GH (1935) The theory of atomic spectra. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Landau LD, Lifshitz LM (1981) Quantum mechanics: non-relativistic theory, 3rd edn. Butterworth-Heinemann, Singapore

    MATH  Google Scholar 

  15. Shanavas KV, Popović ZS, Satpathy S (2014) Theoretical model for Rashba spin-orbit interaction in d electrons. Phys Rev B 90(16):165108

    Article  ADS  Google Scholar 

  16. Herman F, Skillman S (1963) Atomic structure calculations. Prentice-Hall, Englewood Cliffs. OCLC: 819884

    Google Scholar 

  17. Kosugi T, Miyake T, Ishibashi S (2011) Slab thickness dependence of Rashba splitting on Au(111) surface: first-principles and model analyses. J Phys Soc Jpn 80(7):074713

    Article  ADS  Google Scholar 

  18. Slater JC, Koster GF (1954) Simplified LCAO method for the periodic potential problem. Phys Rev 94(6):1498–1524

    Article  ADS  Google Scholar 

  19. Park SR, Kim CH, Yu J, Han JH, Kim C (October 2011) Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys Rev Lett 107(15)

    Google Scholar 

  20. Park SR, Kim C (2015) Microscopic mechanism for the Rashba spin-band splitting: perspective from formation of local orbital angular momentum. J Electron Spectrosc Relat Phenom 201:6–17

    Article  Google Scholar 

  21. Kim B, Kim P, Jung W, Kim Y, Koh Y, Kyung W, Park J, Matsunami M, Kimura S-I, Kim JS, Han JH, Kim C (2013) Microscopic mechanism for asymmetric charge distribution in Rashba-type surface states and the origin of the energy splitting scale. Phys Rev B 88(20):205408

    Article  ADS  Google Scholar 

  22. Kushwaha P, Sunko V, Moll PJW, Bawden L, Riley JM, Nandi N, Rosner H, Schmidt MP, Arnold F, Hassinger E, Kim TK, Hoesch M, Mackenzie AP, King PDC (2015) Nearly free electrons in a 5d delafossite oxide metal. Sci Adv 1(9):e1500692

    Article  ADS  Google Scholar 

  23. Sugano S, Tanabe Y, Kamimura H (1970) Multiplets of transition-metal ions in crystals. Academic, New York

    Google Scholar 

  24. Wu WB, Huang DJ, Okamoto J, Tanaka A, Lin H-J, Chou FC, Fujimori A, Chen CT (2005) Orbital symmetry and electron correlation in \(\text{Na}_{\text{ x }}\, \text{ CoO }_{\text{2 }}\). Phys Rev Lett 94(14):146402

    Google Scholar 

  25. Koshibae W, Maekawa S (2003) Electronic state of a CoO\(_{\rm 2}\) layer with hexagonal structure: a kagome lattice structure in a triangular lattice. Phys Rev Lett 91(25):257003

    Article  ADS  Google Scholar 

  26. Park SR, Han J, Kim C, Koh YY, Kim C, Lee H, Choi HJ, Han JH, Lee KD, Hur NJ, Arita M, Shimada K, Namatame H, Taniguchi M (2012) Chiral orbital-angular momentum in the surface states of Bi\(_{\rm 2\rm Se_{\rm 3}}\). Phys Rev Lett 108(4)

    Google Scholar 

  27. Park J-H, Kim CH, Rhim JW, Han JH (2012) Orbital Rashba effect and its detection by circular dichroism angle-resolved photoemission spectroscopy. Phys Rev B 85(19):195401

    Article  ADS  Google Scholar 

  28. Bawden L, Riley JM, Kim CH, Sankar R, Monkman EJ, Shai DE, Wei HI, Lochocki EB, Wells JW, Meevasana W, Kim TK, Hoesch M, Ohtsubo Y, Le Fevre P, Fennie CJ, Shen KM, Chou F, King PDC (2015) Hierarchical spin-orbital polarization of a giant Rashba system. Sci Adv 1(8):e1500495

    Article  ADS  Google Scholar 

  29. Hong J, Rhim J-W, Kim C, Ryong Park S, Hoon Shim J (2015) Quantitative analysis on electric dipole energy in Rashba band splitting. Sci Rep 5:13488

    Google Scholar 

  30. Khalsa G, Lee B, MacDonald AH (2013) Theory of t\(_{\rm 2g}\) electron-gas Rashba interactions. Phys Rev B 88(4):041302

    Article  ADS  Google Scholar 

  31. King PDC, He RH, Eknapakul T, Buaphet P, Mo S-K, Kaneko Y, Harashima S, Hikita Y, Bahramy MS, Bell C, Hussain Z, Tokura Y, Shen Z-X, Hwang HY, Baumberger F, Meevasana W (2012) Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO\(_{\rm 3}\). Phys Rev Lett 108(11):117602

    Article  ADS  Google Scholar 

  32. King PDC, McKeown Walker S, Tamai A, de la Torre A, Eknapakul T, Buaphet P, Mo S-K, Meevasana W, Bahramy MS, Baumberger F (2014) Quasiparticle dynamics and spin-orbital texture of the \(\text{ SrTiO }_{\text{3 }}\) two-dimensional electron gas. Nat Commun 5:3414

    Google Scholar 

  33. Kim P, Kang KT, Go G, Han JH (2014) Nature of orbital and spin Rashba coupling in the surface bands of \(\text{ SrTiO }_{\text{3 }}\) and \(\text{ KTaO }_{ \text{3 }}\). Phys Rev B 90:205423

    Google Scholar 

  34. Zhong Z, Toth A, Held K (2013) Theory of spin-orbit coupling at \(\text{ LaAlO }_{\text{3}}/\text{SrTiO }_{\text{3 }}\) interfaces and SrTiO\(_{\rm 3}\) surfaces. Phys Rev B 87(16):161102

    Google Scholar 

  35. Bahramy MS, Arita R, Nagaosa N (2011) Origin of giant bulk Rashba splitting: application to BiTeI. Phys Rev B 84(4):041202

    Article  ADS  Google Scholar 

  36. Maass H, Bentmann H, Seibel C, Tusche C, Eremeev SV, Peixoto TRF, Tereshchenko OE, Kokh KA, Chulkov EV, Kirschner J, Reinert F (2016) Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat Commun 7:11621

    Article  ADS  Google Scholar 

  37. Bawden L (2017) A spin- and angle-resolved photoemission study of coupled spin-orbital textures driven by global and local inversion symmetry breaking. University of St Andrews, Thesis

    Google Scholar 

  38. Bihlmayer G, Blügel S, Chulkov EV (2007) Enhanced Rashba spin-orbit splitting in Bi/Ag(111) and Pb/Ag(111) surface alloys from first principles. Phys Rev B 75(19):195414

    Article  ADS  Google Scholar 

  39. Hong J, Rhim JW, Song I, Kim C, Park SR, Shim JH (2017) Giant Rashba-type spin splitting through spin-dependent interatomic-hopping. arXiv:1709.04087

  40. Bian G, Wang X, Miller T, Chiang T-C (2013) Origin of giant Rashba spin splitting in Bi/Ag surface alloys. Phys Rev B 88(8):085427

    Article  ADS  Google Scholar 

  41. Lee H, Choi HJ (2012) Role of d orbitals in the Rashba-type spin splitting for noble-metal surfaces. Phys Rev B 86(4):045437

    Article  ADS  Google Scholar 

  42. Ishida H (2014) Rashba spin splitting of Shockley surface states on semi-infinite crystals. Phys Rev B 90(23):235422

    Article  ADS  Google Scholar 

  43. Kim B, Kim CH, Kim P, Jung W, Kim Y, Koh Y, Arita M, Shimada K, Namatame H, Taniguchi M, Yu J, Kim C (2012) Spin and orbital angular momentum structure of Cu(111) and Au(111) surface states. Phys Rev B 85(19):195402

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Sunko .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunko, V. (2019). Rashba-Like Spin-Split Surface States. In: Angle Resolved Photoemission Spectroscopy of Delafossite Metals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31087-5_6

Download citation

Publish with us

Policies and ethics