Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 605 Accesses

Abstract

Photoemission spectroscopies are experimental techniques based on the photoelectric effect, first observed by Heinrich Hertz in 1887 [1]. When light of sufficiently high frequency \(\nu \) irradiates a metal, electrons with a maximum kinetic energy of \(E_{K}^{max}=h\nu -W\), where W is the material work function, can be extracted. Einstein was awarded the Nobel prize for his explanation of the effect, which relies on the wave-particle duality of light. The same basic process is used in modern experiments to gain insight into the electronic structure of solids. The current of photoelectrons is related to the electronic density of states; the larger the number of electrons that leave a sample with a given kinetic energy, the larger is the density of states at the corresponding binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following I will omit the vector symbol for simplicity, and write k instead of \(\vec {k}\).

  2. 2.

    In the rest of the thesis I will plot the fitted data of this type as binding energy vs momentum, as is usually done. Here I plot the extracted momentum as a function of binding energy, in order to emphasise the way in which the data are extracted: momentum at which the intensity is maximum is found as a function of fixed binding energy.

  3. 3.

    There are many resources available to learn about pumps, pressure gauges, and other examples of UHV technology; see for example Ref. [33].

  4. 4.

    The analysed data from the same sample are shown in Chap. 6 and Appendix D. The same data, but processed, are shown in Fig. 6.1e. The physics of these states is discussed in Chap. 6; here I just use them as an example measurements.

  5. 5.

    Actually a combination of kinetic energy and emission angle, because a straight analyser entrance slit is used. This is a small enough effect not to impede any qualitative discussion, and is compensated for in the analysis, as described above.

References

  1. Hufner S (2003) Photoelectron spectroscopy. Advanced texts in physics. Springer, Berlin

    Chapter  Google Scholar 

  2. Hufner S (ed) (2007) Very high resolution photoelectron spectroscopy. Lecture notes in physics. Springer, Berlin

    Google Scholar 

  3. Damascelli A, Hussain Z, Shen ZX (2003) Angle-resolved photoemission studies of the cuprate superconductors. Rev Mod Phys 75

    Article  ADS  Google Scholar 

  4. Damascelli A (2004) Probing the electronic structure of complex systems by ARPES. Phys Scr T109:61

    Article  ADS  Google Scholar 

  5. Seah MP, Dench WA (1979) Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal 1(1):2–11

    Article  Google Scholar 

  6. Hedin L, Michiels J, Inglesfield J (1998) Transition from the adiabatic to the sudden limit in core-electron photoemission. Phys Rev B 58(23):15565–15582

    Article  ADS  Google Scholar 

  7. Moser S (2017) An experimentalist’s guide to the matrix element in angle resolved photoemission. J Electron Spectrosc Relat Phenom 214:29–52

    Article  Google Scholar 

  8. Khomskii DI (2010) Basic aspects of the quantum theory of solids: order and elementary excitations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Giuliani G (2008) Quantum theory of the electron liquid, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  10. King PDC, Walker SM, Tamai A, de la Torre A, Eknapakul T, Buaphet P, Mo S-K, Meevasana W, Bahramy MS, Baumberger F (2014) Quasiparticle dynamics and spin - orbital texture of the SrTiO\(_{3}\) two-dimensional electron gas. Nat Commun 5:3414

    Google Scholar 

  11. Baumberger F, Ingle NJC, Meevasana W, Shen KM, Lu DH, Perry RS, Mackenzie AP, Hussain Z, Singh DJ, Shen Z-X (2006) Fermi surface and quasiparticle excitations of Sr\(_{2}\)RhO\(_{4}\). Phys Rev Lett 96(24):246402

    Google Scholar 

  12. Ingle NJC, Shen KM, Baumberger F, Meevasana W, Lu DH, Shen Z-X, Damascelli A, Nakatsuji S, Mao ZQ, Maeno Y, Kimura T, Tokura Y (2005) Quantitative analysis of Sr\(_{2}\)RuO\(_{4}\) angle-resolved photoemission spectra: many-body interactions in a model Fermi liquid. Phys Rev B 72(20):205114

    Google Scholar 

  13. Migdal AB (1958) Interaction between electrons and lattice vibrations in a normal metal. JETP 7(6):996

    Google Scholar 

  14. Grimvall G (1976) The electron-phonon interaction in normal metals. Phys Scr 14(1–2):63

    Article  ADS  Google Scholar 

  15. Smith NV, Thiry P, Petroff Y (1993) Photoemission linewidths and quasiparticle lifetimes. Phys Rev B 47(23):15476–15481

    Article  ADS  Google Scholar 

  16. Kushwaha P, Sunko V, Moll PJW, Bawden L, Riley JM, Nandi N, Rosner H, Schmidt MP, Arnold F, Hassinger E, Kim TK, Hoesch M, Mackenzie AP, King PDC (2015) Nearly free electrons in a 5d delafossite oxide metal. Sci Adv 1(9):e1500692

    Article  ADS  Google Scholar 

  17. Arnold F, Naumann M, Khim S, Rosner H, Sunko V, Mazzola F, King PDC, Mackenzie AP, Hassinger E (2017) Quasi-two-dimensional Fermi surface topography of the delafossite PdRhO\(_{2}\). Phys Rev B 96(7):075163

    Google Scholar 

  18. Sunko V, Rosner H, Kushwaha P, Khim S, Mazzola F, Bawden L, Clark OJ, Riley JM, Kasinathan D, Haverkort MW, Kim TK, Hoesch M, Fujii J, Vobornik I, Mackenzie AP, King PDC (2017) Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature 549(7673):492–496

    Article  ADS  Google Scholar 

  19. Sunko V, Mazzola F, Kitamura S, Khim S, Kushwaha P, Clark OJ, Watson M, Marković I, Biswas D, Pourovskii L, Kim TK, Lee T-L, Thakur PK, Rosner H, Georges A, Moessner R, Oka T, Mackenzie AP, King PDC (2018) Probing spin correlations using angle resolved photoemission in a coupled metallic/Mott insulator system. arXiv:1809.08972

  20. Mazzola F, Sunko V, Khim S, Rosner H, Kushwaha P, Clark OJ, Bawden L, Marković I, Kim TK, Hoesch M, Mackenzie AP, King PDC (2018) Itinerant ferromagnetism of the Pd-terminated polar surface of PdCoO\(_{2}\). Proc Natl Acad Sci 115(51):12956–12960

    Google Scholar 

  21. Nandi N, Scaffidi T, Kushwaha P, Khim S, Barber ME, Sunko V, Mazzola F, King PDC, Rosner H, Moll PJW, König M, Moore JE, Hartnoll S, Mackenzie AP (2018) Unconventional magneto-transport in ultrapure PdCoO\(_{2}\) and PtCoO\(_{2}\). NPJ Quantum Mater 3(1):66

    Google Scholar 

  22. Bahramy MS, Clark OJ, Yang B-J, Feng J, Bawden L, Riley JM, Marković I, Mazzola F, Sunko V, Biswas D, Cooil SP, Jorge M, Wells JW, Leandersson M, Balasubramanian T, Fujii J, Vobornik I, Rault JE, Kim TK, Hoesch M, Okawa K, Asakawa M, Sasagawa T, Eknapakul T, Meevasana W, King PDC (2018) Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides. Nat Mater 17(1):21–28

    Article  ADS  Google Scholar 

  23. Bawden L, Cooil SP, Mazzola F, Riley JM, Collins-McIntyre LJ, Sunko V, Hunvik KWB, Leandersson M, Polley CM, Balasubramanian T, Kim TK, Hoesch M, Wells JW, Balakrishnan G, Bahramy MS, King PDC (2016) Spin–valley locking in the normal state of a transition-metal dichalcogenide superconductor. Nat Commun 7:11711

    Google Scholar 

  24. Clark OJ, Neat MJ, Okawa K, Bawden L, Markovic I, Mazzola F, Feng J, Sunko V, Riley JM, Meevasana W, Fujii J, Vobornik I, Kim TK, Hoesch M, Sasagawa T, Wahl P, Bahramy MS, King PDC (2018) Fermiology and superconductivity of topological surface states in PdTe\(_{2}\). Phys Rev Lett 120(15):156401

    Google Scholar 

  25. Clark OJ, Mazzola F, Feng J, Sunko V, Marković I, Bawden L, Kim TK, King PDC, Bahramy MS (2019) Dual quantum confinement and anisotropic spin splitting in the multivalley semimetal PtSe\(_{2}\). Phys Rev B 99(4):045438

    Google Scholar 

  26. Watson MD, Clark OJ, Mazzola F, Marković I, Sunko V, Kim TK, Rossnagel K, King PDC (2019) Orbital- and k\(_{\rm z}\)-selective hybridization of Se 4p and Ti 3d states in the charge density wave phase of TiSe\(_{2}\). Phys Rev Lett 122(7):076404

    Google Scholar 

  27. Sunko V, Abarca Morales E, Marković I, Barber ME, Milosavljević D, Mazzola F, Sokolov DA, Kikugawa N, Cacho C, Dudin P, Rosner H, Hicks CW, King PDC, Mackenzie AP (2019) Direct observation of a uniaxial stress-driven Lifshitz transition in Sr\(_{2}\)RuO\(_{4}\). arXiv:1903.09581

  28. Willmott P (2011) An introduction to synchrotron radiation: techniques and applications, 1st edn. Wiley, Chichester

    Book  Google Scholar 

  29. Schmitz-Antoniak C (2015) X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications. Rep Prog Phys 78(6):062501

    Article  ADS  Google Scholar 

  30. Mobilio S, Boscherini F, Meneghini C (eds) (2015) Synchrotron radiation: basics, methods and applications. Springer, Berlin

    Google Scholar 

  31. Hoesch M, Kim TK, Dudin P, Wang H, Scott S, Harris P, Patel S, Matthews M, Hawkins D, Alcock SG, Richter T, Mudd JJ, Basham M, Pratt L, Leicester P, Longhi EC, Tamai A, Baumberger F (2017) A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev Sci Instrum 88(1):013106

    Article  ADS  Google Scholar 

  32. Zhou XJ, Wannberg B, Yang WL, Brouet V, Sun Z, Douglas JF, Dessau D, Hussain Z, Shen ZX (2005) Space charge effect and mirror charge effect in photoemission spectroscopy. J Electron Spectrosc Relat Phenom 142(1):27–38

    Article  Google Scholar 

  33. Hoffman D, Singh B, Thomas JH III (eds) Handbook of vacuum science and technology. Elsevier, Amsterdam

    Google Scholar 

  34. Sobota JA, Kim K, Takatsu H, Hashimoto M, Mo S-K, Hussain Z, Oguchi T, Shishidou T, Maeno Y, Min BI, Shen Z-X (2013) Electronic structure of the metallic antiferromagnet PdCrO\(_{2}\) measured by angle-resolved photoemission spectroscopy. Phys Rev B 88(12):125109

    Google Scholar 

  35. Thompson A (ed) (2009) X-ray booklet data, 3rd edn. Lawrence Berkley National Laboratory, Berkley

    Google Scholar 

  36. Okuda T, Takeichi Y, Maeda Y, Harasawa A, Matsuda I, Kinoshita T, Kakizaki A (2008) A new spin-polarized photoemission spectrometer with very high efficiency and energy resolution. Rev Sci Instrum 79(12):123117

    Article  ADS  Google Scholar 

  37. Okuda T, Miyamaoto K, Miyahara K, Kuroda K, Kimura A, Namatame H, Taniguchi M (2011) Efficient spin resolved spectroscopy observation machine at Hiroshima synchrotron radiation center. Rev Sci Instrum 82(10):103302

    Article  ADS  Google Scholar 

  38. Okuda T, Miyamoto K, Kimura A, Namatame H, Taniguchi M (2015) A double VLEED spin detector for high-resolution three dimensional spin vectorial analysis of anisotropic Rashba spin splitting. J Electron Spectrosc Relat Phenom 201:23–29

    Article  Google Scholar 

  39. Bigi C, Das PK, Benedetti D, Salvador F, Krizmancic D, Sergo R, Martin A, Panaccione G, Rossi G, Fujii J, Vobornik I (2017) Very efficient spin polarization analysis (VESPA): new exchange scattering-based setup for spin-resolved ARPES at APE-NFFA beamline at Elettra. J Synchrotron Radiat 24(4):750–756

    Article  Google Scholar 

  40. Hoesch M, Muntwiler M, Petrov VN, Hengsberger M, Patthey L, Shi M, Falub M, Greber T, Osterwalder J (2004) Spin structure of the Shockley surface state on Au(111). Phys Rev B 69(24):241401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Sunko .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunko, V. (2019). Angle Resolved Photoemission. In: Angle Resolved Photoemission Spectroscopy of Delafossite Metals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31087-5_2

Download citation

Publish with us

Policies and ethics