Skip to main content

Inferring Impulsive Hydrodynamic Loading During Hull Slamming From Water Velocity Measurements

  • Chapter
  • First Online:
Advances in Thick Section Composite and Sandwich Structures
  • 729 Accesses

Abstract

An improved understanding of the fluid-solid interaction associated with a solid body slamming on the water surface is central to the design of naval and aeronautical structures. Of critical importance is the quantification of the hydrodynamic loading experienced by a slamming hull, in relation with its geometric and physical properties along with the conditions of the impact. This book chapter summarizes research supported by the Office of Naval Research, Solid Mechanics Program, at New York University to establish a reliable experimental methodology for the spatially-distributed, temporally-resolved inference of the hydrodynamic loading experienced by a slamming structure. Through the use of particle image velocimetry (PIV), we demonstrate the possibility to infer the hydrodynamic loading on rigid and compliant hulls that enter and exit the water surface, with varying inclination angles and different geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faltinsen OM (1990) Sea loads on ships and offshore structures. Cambridge University Press, New York

    Google Scholar 

  2. Faltinsen OM, Landrini M, Greco M (2004) Slamming in marine applications. J Eng Math 48(3–4):187–217

    Article  Google Scholar 

  3. Hughes K et al (2013) From aerospace to offshore: bridging the numerical simulation gaps-simulation advancements for fluid structure interaction problems. Int. J. Impact Eng 61:48–63

    Article  Google Scholar 

  4. Kapsenberg G (2011) Slamming of ships: where are we now? Philos Trans R Soc A Math Phys Eng Sci 369(1947):2892–2919

    Article  CAS  Google Scholar 

  5. Von Karman T (1929) The impact on seaplane floats, during landing. NACA-TN-321

    Google Scholar 

  6. Wagner H (1932) Uber stoss-und gleitvorgange an der ober- flache von flussigkeite. ZAMM – Zeitschrift fur Ange- wandte Mathematik und Mechanik 12(4):193–215

    Article  Google Scholar 

  7. Abrate S (2011)) Hull slamming. Appl Mech Rev 64(6):060803

    Article  Google Scholar 

  8. Panciroli R, Abrate S, Minak G, Zucchelli A (2012) Hydroelasticity in water-entry problems: comparison between experimental and SPH results. Compos Struct 94(2):532–539

    Article  Google Scholar 

  9. Panciroli R, Abrate S, Minak G (2013) Dynamic response of flexible wedges entering the water. Compos Struct 99:163–171

    Article  Google Scholar 

  10. Das K, Batra RC (2011) Local water slamming impact on sandwich composite hulls. J Fluid Struct 27(4):523–551

    Article  Google Scholar 

  11. Qin Z, Batra RC (2009) Local slamming impact of sandwich composite hulls. Int J Solids Struct 46(10):2011–2035

    Article  Google Scholar 

  12. Ray MC, Batra RC (2013) Transient hydroelastic analysis of sandwich beams subjected to slamming in water. Thin-Walled Struct 72:206–216

    Article  Google Scholar 

  13. Xiao J, Batra RC (2012) Local water slamming of curved rigid hulls. Int J Multiphys 6(3):305–340

    Article  Google Scholar 

  14. Xiao J, Batra RC (2014) Delamination in sandwich panels due to local water slamming loads. J Fluid Struct 48:122–155

    Article  Google Scholar 

  15. Allen T, Battley M (2015) Quantification of hydroelasticity in water impacts of flexible composite hull panels. Ocean Eng 100:117–125

    Article  Google Scholar 

  16. Battley MA, Clark AM, Allen TD, Cameron CJ (2014) Shear strength of sandwich core materials subjected to loading rates relevant to water slamming. J Reinf Plast Compos 33(6):506–513

    Article  CAS  Google Scholar 

  17. Swidan A et al (2016) Experimental drop test investigation into wetdeck slamming loads on a generic catamaran hullform. Ocean Eng 117:143–153

    Article  Google Scholar 

  18. Battley M, Allen T (2016) Characterisation of fluid-structure interaction for water impact of composite panels. Int J Multiphys 6:3

    Google Scholar 

  19. Battley M, Allen T (2012) Servo-hydraulic system for controlled velocity water impact of marine sandwich panels. Exp Mech 52(1):95–106

    Article  Google Scholar 

  20. Razola M, Rosén A, Garme K (2014) Experimental evaluation of slamming pressure models used in structural design of high-speed craft. Int Shipbuild Prog 61(1–2):17–39

    Google Scholar 

  21. Stenius I, Rosén A, Battley M, Allen T (2013) Experimental hydroelastic characterization of slamming loaded marine panels. Ocean Eng 74:1–15

    Article  Google Scholar 

  22. Stenius I, Rosén A, Battley M, Allen T, & Pehrson P (2011) Hydroelastic effects in slamming loaded panels. 11th. International conference on Fast Sea transportation (FAST 2011), Honolulu, Hawaii pp 644–652

    Google Scholar 

  23. Stenius I, Rosén A, Kuttenkeuler J (2011) Hydroelastic interaction in panel-water impacts of high-speed craft. Ocean Eng 38(2–3):371–381

    Article  Google Scholar 

  24. Lewis SG, Hudson DA, Turnock SR, Taunton DJ (2010) Impact of a free-falling wedge with water: synchronized visualization pressure and acceleration measurements. Exp Fluids 42(3):035509

    Google Scholar 

  25. Luo H, Wang H, Soares CG (2012) Numerical and experimental study of hydrodynamic impact and elastic response of one free-drop wedge with stiffened panels. Ocean Eng 40:1–14

    Article  Google Scholar 

  26. De Backer G et al (2009) Experimental investigation of water impact on axisymmetric bodies. Appl Ocean Res 31(3):143–156

    Article  Google Scholar 

  27. Charca S, Shafiq B, Just F (2009) Repeated slamming of sandwich composite panels on water. J Sandw Struct Mater 11(5):409–424

    Article  Google Scholar 

  28. Aureli M, Porfiri M (2010) Low frequency and large amplitude oscillations of cantilevers in viscous fluids. Appl Phys Lett 96(16):164102

    Article  CAS  Google Scholar 

  29. Jalalisendi M, Panciroli R, Cha Y, Porfiri M (2014) A particle image velocimetry study of the flow physics generated by a thin lamina oscillating in a viscous fluid. J Appl Phys 115(5):054901

    Article  CAS  Google Scholar 

  30. Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, New York

    Book  Google Scholar 

  31. Van Oudheusden BW (2013) PIV-based pressure measurement. Meas Sci Technol 24(3):032001

    Article  CAS  Google Scholar 

  32. Cha Y, Phan CN, Porfiri M (2012) Energy exchange during slamming impact of an ionic polymer metal composite. Appl Phys Lett 101(9):094103

    Article  CAS  Google Scholar 

  33. Panciroli R, Porfiri M (2013) Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp Fluids 54(12):1630

    Article  Google Scholar 

  34. Panciroli R, Porfiri M (2015) Analysis of hydroelastic slamming through particle image velocimetry. J Sound Vib 347:63–78

    Article  Google Scholar 

  35. Facci AL, Panciroli R, Ubertini S, Porfiri M (2015) Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets. J Fluid Struct 55:484–500

    Article  Google Scholar 

  36. Panciroli R, Shams A, Porfiri M (2015) Experiments on the water entry of curved wedges: high speed imaging and particle image velocimetry. Ocean Eng 94:213–222

    Article  Google Scholar 

  37. Jalalisendi M, Shams A, Panciroli R, Porfiri M (2015) Experimental reconstruction of three-dimensional hydrodynamic loading in water entry problems through particle image velocimetry. Exp Fluids 56(2):1–17

    Article  Google Scholar 

  38. Jalalisendi M, Osma SJ, Porfiri M (2015) Three-dimensional water entry of a solid body: a particle image velocimetry study. J Fluid Struct 59:85–102

    Article  Google Scholar 

  39. Shams A, Jalalisendi M, Porfiri M (2015) Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys Fluids 27(2):027103

    Article  CAS  Google Scholar 

  40. Facci AL, Porfiri M, Ubertini S (2016) Three-dimensional water entry of a solid body: a computational study. J Fluid Stuct 66:36–53

    Article  Google Scholar 

  41. Jalalisendi M, Zhao S, Porfiri M (2017) Shallow water entry: modeling and experiments. J Eng Math 104(1):131–156

    Article  CAS  Google Scholar 

  42. Shams A, Zhao S, Porfiri M (2017) Hydroelastic slamming of flexible wedges: modeling and experiments from water entry to exit. Phys Fluids 29(3):037107

    Article  CAS  Google Scholar 

  43. Shams A, Porfiri M (2015) Treatment of hydroelastic impact of flexible wedges. J Fluid Struct 57:229–246

    Article  Google Scholar 

  44. Shams A, Zhao S, Porfiri M (2017) Water impact of syntactic foams. Materials 10(3)

    Article  CAS  Google Scholar 

  45. Jalalisendi M, Porfiri M (2018) Water entry of compliant slender bodies: theory and experiments. Int J Mech Sci 149:514–529

    Article  Google Scholar 

  46. Jalalisendi M, Porfiri M (2018) Water entry of cylindrical shells: theory and experiments. AIAA J 56(11):4500–4514

    Article  Google Scholar 

  47. Russo S, Jalalisendi M, Falcucci G, Porfiri M (2018) Experimental characterization of oblique and asymmetric water entry. Exp Thermal Fluid Sci 92:141–161

    Article  Google Scholar 

  48. Jalalisendi M, Benbelkacem G, Porfiri M (2018) Solid obstacles can reduce hydrodynamic loading during water entry. Phys Rev Fluids 3(7):074801

    Article  Google Scholar 

  49. Baur T & Köngeter J (1999) PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena. 3rd International Workshop on PIV’99, Santa Barbara, pp 101–106

    Google Scholar 

  50. Fujisawa N, Nakamura Y, Matsuura F, Sato Y (2006) Pressure field evaluation in microchannel junction flows through PIV measurement. Microfluid Nanofluid 2(5):447–453

    Article  Google Scholar 

  51. Fujisawa N, Tanahashi S, Srinivas K (2005) Evaluation of pressure field and fluid forces on a circular cylinder with and without rotational oscillation using velocity data from PIV measurement. Meas Sci Technol 16(4):989–996

    Article  CAS  Google Scholar 

  52. Liu X, Katz J (2006) Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp Fluids 41(2):227–240

    Article  Google Scholar 

  53. Murai Y, Nakada T, Suzuki T, Yamamoto F (2007) Particle tracking velocimetry applied to estimate the pressure field around a savonius turbine. Meas Sci Technol 18(8):2491–2503

    Article  CAS  Google Scholar 

  54. Jensen A, Sveen JK, Grue J, Richon J-B, Gray C (2001) Accelerations in water waves by extended particle image velocimetry. Exp Fluids 30(5):500–510

    Article  Google Scholar 

  55. Nila A, Vanlanduit S, Vepa S, Van Paepegem W (2013) A PIV-based method for estimating slamming loads during water entry of rigid bodies. Meas Sci Technol 24(4):045303

    Article  CAS  Google Scholar 

  56. Korobkin A (2004) Analytical models of water impact. Eur J Appl Math 15(06):821–838

    Article  CAS  Google Scholar 

  57. Korobkin AA (1996) In: Ohkusu M (ed) Advances in marine hydrodynamics. Computational Mechanics, Boston, pp 323–371

    Google Scholar 

  58. Thielicke W & Stamhuis EJ (2014) PIVlab – time-resolved digital particle image velocimetry tool for MATLAB (version: 1.32)

    Google Scholar 

  59. Thielicke W, Stamhuis EJ (2014) PIVlab - towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Softw 2(1):e30

    Google Scholar 

  60. Panton RL (1994) Incompressible flow. Wiley, New York

    Google Scholar 

  61. Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54(4):1167–1178

    Article  Google Scholar 

  62. Baur T (1999) PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena. 3rd International Workshop on PIV'99, Santa Barbara pp 101–106

    Google Scholar 

  63. Porfiri M, Shams A (2017) Pressure reconstruction during water impact through particle image velocimetry: methodology overview and applications to lightweight structures. In: Lopresto V, Langella A, Abrate S (eds) Dynamic response and failure of composite materials and structures. Woodhead Publishing, Duxford, pp 395–416

    Chapter  Google Scholar 

  64. Russo S, Jalalisendi M, Falcucci G, & Porfiri M (2018) A critical assessment of PIV-based pressure reconstruction in water-entry problems. AIP Conference Proceedings, (AIP Publishing), p 420012

    Google Scholar 

  65. Narkis M, Kenig S, Puterman M (1984) Three-phase syntactic foams. Polym Compos 5(2):159–165

    Article  Google Scholar 

  66. Gupta N, Zeltmann SE, Shunmugasamy VC, Pinisetty D (2014) Applications of polymer matrix syntactic foams. JOM 66(2):245–254

    Article  CAS  Google Scholar 

  67. Shunmugasamy VC, Anantharaman H, Pinisetty D, Gupta N (2015) Unnotched Izod impact characterization of glass hollow particle/vinyl ester syntactic foams. J Compos Mater 49(2):185–197

    Article  Google Scholar 

  68. Wang S, Soares CG (2017) Review of ship slamming loads and responses. J Mar Sci Appl 16(4):427–445

    Article  Google Scholar 

  69. Izadi M, Ghadimi P, Fadavi M, Tavakoli S (2018) Numerical modeling of the freefall of two-dimensional wedge bodies into water surface. J Braz Soc Mech Sci Eng 40(1):24

    Article  Google Scholar 

  70. Pan Z, Whitehead JP, Richards G, Truscott TT, & Smith BL (2018) Error propagation dynamics of PIV-based pressure field calculation (3): what is the minimum resolvable pressure in a reconstructed field? arXiv preprint arXiv:1807.03958

    Google Scholar 

  71. Zhang P, Peterson SD, Porfiri M (2019) Combined particle image velocimetry/digital image correlation for load estimation. Exp Thermal Fluid Sci 100:207–221

    Article  Google Scholar 

  72. Shams A, Lopresto V, Porfiri M (2017) Modeling fluid-structure interactions during impact loading of water-backed panels. Compos Struct 171:576–590

    Article  Google Scholar 

Download references

Acknowledgments

The work has been supported by the Office of Naval Research (Grant N00014-10-1-0988 and N00014-18-1-2218) with Dr. Y.D.S. Rajapakse as the program manager. The author would like to thank Dr. Andrea Facci, Dr. Giacomo Falcucci, Dr. Mohammad Jalalisendi, Dr. Simonluca Russo, Dr. Adel Shams, Dr. Stefano Ubertini, Dr. Peng Zhang, and Mr. Sam Zhao, who have contributed to the research summarized in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Porfiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porfiri, M. (2020). Inferring Impulsive Hydrodynamic Loading During Hull Slamming From Water Velocity Measurements. In: Lee, S. (eds) Advances in Thick Section Composite and Sandwich Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-31065-3_9

Download citation

Publish with us

Policies and ethics