Skip to main content

Damage Tolerance Assessment of Naval Sandwich Structures with Face-Core Debonds

  • Chapter
  • First Online:
Advances in Thick Section Composite and Sandwich Structures

Abstract

The presence of face-core debonds can seriously reduce the load-carrying capacity and remaining lifetime of sandwich structures. During the past 30 years considerable progress has been made in the modelling and experimental testing of sandwich structures for marine applications, especially with regard to the effects of such debonds. Much of this research has been supported by the US Office of Naval Research. This chapter summarises these developments, with special emphasis on the progress made during the past 10–15 years concerning foam-cored sandwich for naval applications. Fracture mechanics based analysis methods, experimental techniques for characterising face-core interfaces under mode I, mode II and mode III deformations and their combinations, and analysis and testing of structural elements such as beams, columns and panels in the presence of debonds are described. The assessment of observed debond damage in naval sandwich structures is addressed, and the implications for ensuring acceptable damage tolerance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayman B (2003) Inspection and repair of sandwich structures based on damage tolerance principles. In: Vinson JR, Rajapakse YDS, Carlsson LA (eds) 6th International Conference on Sandwich Structures. CRC Press, Boca Raton, pp 955–963

    Google Scholar 

  2. Hayman B, Zenkert D (2004) The influence of defects and damage on the strength of FRP sandwich panels for naval ships. In: Keil H, Lehmann E (eds) 9th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS 2004). Seehafen Verlag GmbH, Hamburg, pp 719–726

    Google Scholar 

  3. Hayman B (2004) Defect and damage assessment for ships built in FRP sandwich. In: RINA Conference on High Speed Craft, Royal Institution of Naval Architects, London, November 2004

    Google Scholar 

  4. Zenkert D, Shipsha A, Bull P et al (2005) Damage tolerance assessment of composite sandwich panels with localised damage. Compos Sci Technol 65(15–16):2597–2611

    Article  Google Scholar 

  5. Hayman B (2007) Approaches to damage assessment and damage tolerance for FRP sandwich structures. J Sandw Struct Mater 9(6):571–596

    Article  Google Scholar 

  6. Berggreen C (2004) Damage tolerance of debonded sandwich structures, Ph.D. Thesis, Department of Mechanial Engineering, Technical University of Denmark

    Google Scholar 

  7. Zenkert D (1991) Strength of sandwich beams with interface debondings. Compos Struct 17:331–350

    Article  Google Scholar 

  8. Zenkert D (1990) Damage tolerance of foam core sandwich constructions. Doctoral thesis published as Report No. 90–8, Royal Institute of Technology (KTH), Stockholm, Sweden 1990

    Google Scholar 

  9. Carlsson LA, Kardomateas GA (2011) Structural and failure mechanics of sandwich composites. Springer, Netherlands

    Book  Google Scholar 

  10. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221:163–198

    Google Scholar 

  11. Suo Z (1990) Singularities, interfaces and cracks in dissimilar media. Proc R Soc Lond A 427:331–358

    Article  CAS  Google Scholar 

  12. Suo Z, Hutchinson JW (1990) Interface crack between two elastic layers. Int J Fract 43(1):1–18

    Article  Google Scholar 

  13. Dundurs J (1969) Discussion on “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading”. J Appl Mech 36:650–652

    Article  Google Scholar 

  14. Hutchinson JW, Suo Z (1991) Mixed mode cracking in layered materials. Adv Appl Mech 29:63–191

    Article  Google Scholar 

  15. Suo Z (1989) Singularities interacting with interfaces and cracks. Int J Solids Struct 25(10):1133–1142

    Article  Google Scholar 

  16. Prasad S, Carlsson LA (1994) Debonding and crack kinking in foam core sandwich beams – I: Analysis of fracture specimens. Eng Fract Mech 47:813–824

    Article  Google Scholar 

  17. Prasad S, Carlsson LA (1994) Debonding and crack kinking in foam core sandwich beam – II: Experimental investigation. Eng Fract Mech 47:825–841

    Article  Google Scholar 

  18. Rice JR (1968) A path-independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:376–386

    Article  Google Scholar 

  19. Berggreen C, Simonsen BC (2005) Non-uniform compressive strength of debonded sandwich panels - II. Fracture mechanics investigation. J Sandw Struct Mater 7(6):483–517

    Article  Google Scholar 

  20. Berggreen C, Simonsen BC, Borum KK (2007) Experimental and numerical study of interface crack propagation in foam cored sandwich beams. J Compos Mater 41(4):493–520

    Article  CAS  Google Scholar 

  21. Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9(4):931–938

    Article  Google Scholar 

  22. Raju IS (1987) Calculation of strain-energy release rates with higher order and singular finite elements. Eng Fract Mech 28(3):251–274

    Article  Google Scholar 

  23. Williams M (1959) The stresses around a fault or crack in dissimilar media. Bull Seismol Soc Am 49(2):199–204

    Google Scholar 

  24. Erdogan F (1963) Stress distribution in a nonhomogeneous elastic plane with cracks. J Appl Mech 30(2):232–236

    Article  Google Scholar 

  25. Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85(4):528–534

    Article  CAS  Google Scholar 

  26. Moslemian R, Karlsson AM, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. Int J Fatigue 33(12):1526–1532

    Article  Google Scholar 

  27. Moslemian R, Berggreen C, Karlsson AM (2012) Face/core debond propagation in sandwich panels under cyclic loading - Part I: Numerical modeling. In: 10th International Conference on Sandwich Structures. Nantes, France, pp 41–42

    Google Scholar 

  28. Moslemian R, Berggreen C, Karlsson AM (2012) Face/core debond propagation in sandwich panels under cyclic loading - Part II: Experimental validation. In: 10th International Conference on Sandwich Structures. Nantes, France, pp 43–44

    Google Scholar 

  29. ASTM standard C393–62 Standard method of flexure test of flat sandwich constructions. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  30. Carlsson LA, Sendlein LS, Merry SL (1991) Characterization of face sheet/core shear fracture of composite sandwich beams. J Compos Mater 25:101–116

    Article  Google Scholar 

  31. Carlsson LA (1991) On the design of the cracked sandwich beam (CSB) specimen. J Reinf Plast Compos 10:434–444

    Article  Google Scholar 

  32. ASTM C273-61 (1991) Shear test in flatwise plane of flat sandwich construction and sandwich cores. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  33. Carlsson LA, Matteson RC, Aviles F, Loup DC (2005) Crack path in foam cored DCB sandwich fracture specimens. Compos Sci Technol 65:2612–2621

    Article  CAS  Google Scholar 

  34. Aviles F, Carlsson LA (2007) Analysis of the sandwich DCB specimen for debond characterization. Eng Fract Mech 75:153–168

    Article  Google Scholar 

  35. Sørensen BF, Jørgensen K, Jacobsen TK, Østergaard RC (2006) DCB-specimen loaded with uneven bending moments. Int J Fract 141:163–176

    Article  CAS  Google Scholar 

  36. Lundsgaard-Larsen C, Sørensen BF, Berggreen C, Østergaard RC (2008) A modified DCB sandwich specimen for measuring mixed mode cohesive laws. Eng Fract Mech 75(8):2514–2530

    Article  Google Scholar 

  37. Kardomateas GA, Berggreen C, Carlsson LA (2013) Energy release rate and mode mixity of a face/core debond in a sandwich beam. AIAA J 51(4):885–892. https://doi.org/10.2514/1.J051765

    Article  Google Scholar 

  38. Saseendran V, Berggreen C, Carlsson LA (2018) Fracture mechanics analysis of reinforced DCB sandwich debond specimen loaded by moments. AIAA J 56(1):413–422. https://doi.org/10.2514/1.J056039

    Article  CAS  Google Scholar 

  39. Berggreen C, Saseendran V, Carlsson LA (2018) A modified DCB-UBM test method for interfacial fracture toughness characterization of sandwich composites. Eng Fract Mech 203:208–223. https://doi.org/10.1016/j.engfracmech.2018.06.036

    Article  Google Scholar 

  40. Li X, Carlsson LA (1999) The tilted sandwich debond (TSD) specimen for face/core interface fracture characterization. J Sandw Struct Mater 1(1):60–75

    Article  CAS  Google Scholar 

  41. Li X, Carlsson LA (2000) Elastic foundation analysis of tilted sandwich debond (TSD) specimen. J Sandw Struct Mater 2:3–32

    Article  Google Scholar 

  42. Li X, Carlsson LA (2001) Fracture mechanics analysis of tilted sandwich debond (TSD) specimen. J Compos Mater 35:2145–2168

    Article  Google Scholar 

  43. Viana GM, Carlsson LA (2002) Mode mixity and crack tip yield zones in TSD sandwich specimens with PVC foam core. J Sandw Struct Mater 4:141–155

    Article  CAS  Google Scholar 

  44. Viana GM, Carlsson LA (2003) Influences of foam density and core thickness on debond toughness of sandwich specimens with PVC foam core. J Sandw Struct Mater 5:103–118

    Article  CAS  Google Scholar 

  45. Berggreen C, Carlsson LA (2010) A modified TSD specimen for fracture toughness characterization – fracture mechanics analysis and design. J Compos Mater 44(15):1893–1912

    Article  Google Scholar 

  46. Berggreen C, Quispitupa A, Costache A, Carlsson LA (2014) Face/core mixed mode debond fracture toughness characterization using the modified TSD test method. J Compos Mater 48(16):1939–1945. https://doi.org/10.1177/0021998313492358

    Article  Google Scholar 

  47. Quispitupa A, Berggreen C, Carlsson LA (2009) On the analysis of a mixed mode bending sandwich specimen for debond fracture characterization. Eng Fract Mech 76(4):594–613

    Article  Google Scholar 

  48. Quispitupa A, Berggreen C, Carlsson LA (2010) Design analysis of the mixed mode bending sandwich specimen. J Sandw Struct Mater 12(2):253–272

    Article  Google Scholar 

  49. Quispitupa A, Berggreen C, Carlsson LA (2011) Face/core interface fracture characterization of mixed mode bending sandwich specimens. Fatigue Fract Eng Mater Struct 34(11):839–853

    Article  CAS  Google Scholar 

  50. Manca M, Quispitupa A, Berggreen C, Carlsson LA (2012) Face/core debond fatigue crack growth characterization using the sandwich mixed mode bending specimen. Compos Part A 43:2120–2127

    Article  CAS  Google Scholar 

  51. Manca M, Berggreen C, Carlsson LA (2015) G-control fatigue testing for cyclic crack propagation in composite structures. Eng Fract Mech 149:375–386. https://doi.org/10.1016/j.engfracmech.2015.06.059

    Article  Google Scholar 

  52. Manca M, Berggreen C, Carlsson LA, Bortolotti P (2016) Fatigue characterization of poly vinyl chloride (PVC) foam core sandwich composite using the G-control method. J Sandw Struct Mater 18(3):374–394. https://doi.org/10.1177/1099636215603049

    Article  CAS  Google Scholar 

  53. Sabbadin P, Berggreen C, Nygard B (2018) Development of a mode I/II/III test fixture for composite laminates and sandwich face/core fracture characterization. In: 12th International Conference on Sandwich Structures, Lausanne, Switzerland, pp 35–37

    Google Scholar 

  54. Davidson BD, Sediles FO (2011) Mixed-mode I-II-III delamination toughness determination via a shear-torsion-bending test. Compos Part A 42:589–603

    Article  CAS  Google Scholar 

  55. Barbieri L, Massabo R, Berggreen C (2018) The effects of shear and near tip deformations on interface fracture of symmetric sandwich beams. Eng Fract Mech 201:298–321. https://doi.org/10.1016/j.engfracmech.2018.06.039

    Article  Google Scholar 

  56. Farshidi A, Berggreen C, Carlsson LA (2019) Low temperature mixed-mode debond fracture and fatigue characterisation of foam core sandwich. J Sandwich Struct Mater in press:109963621877942. https://doi.org/10.1177/1099636218779420

  57. Layne AM, Carlsson LA (2002) Test method for measuring strength of a curved sandwich beam. Exp Mech 42:194–199

    Article  Google Scholar 

  58. Layne AM, Carlsson LA (2002) Flexural strength of curved sandwich beams with face/core debond. J Sandw Struct Mater 4:203–217

    Article  Google Scholar 

  59. Aviles F, Carlsson LA (2005) Elastic foundation analysis of local face buckling in debonded sandwich columns. Mech Mater 37:1026–1034

    Article  Google Scholar 

  60. Moslemian R, Berggreen C, Carlsson LA, Avilés F (2009) Failure investigation of debonded sandwich columns: an experimental and numerical study. J Mech Mater Struct 4(7–8):1469–1487

    Article  Google Scholar 

  61. Nøkkentved A, Lundsgaard-Larsen C, Berggreen C (2005) Non-uniform compressive strength of debonded sandwich panels – I. Experimental investigation. J Sandw Struct Mater 7(6):461–448

    Article  Google Scholar 

  62. Moslemian R, Quispitupa A, Berggreen C, Hayman B (2012) Failure of uniformly compression loaded debond damagedsandwich panels - an experimental and numerical study. J Sandw Struct Mater 14(3):297–324

    Article  CAS  Google Scholar 

  63. Aviles F, Carlsson LA (2006) Experimental study of debonded sandwich panels loaded in compression. J Sandw Struct Mater 8:7–30

    Article  CAS  Google Scholar 

  64. Aviles F, Carlsson LA (2005) Face sheet buckling of debonded sandwich panels using a 2D elastic foundation approach. Mech Adv Mater Struct 12(5):349–361

    Article  CAS  Google Scholar 

  65. Aviles F, Carlsson LA (2006) Three-dimensional finite element buckling analysis of debonded sandwich panels. J Compos Mater 40(11):993–1008

    Article  CAS  Google Scholar 

  66. Aviles F, Carlsson LA (2007) Post-buckling and debond propagation in sandwich panels subject to in-plane loading. Eng Fract Mech 74:794–806

    Article  Google Scholar 

  67. Jolma P, Segercrantz S, Berggreen C (2007) Ultimate failure of debond damaged sandwich panels loaded with lateral pressure – an experimental and fracture mechanical study. J Sandw Struct Mater 9(2):167–196

    Article  CAS  Google Scholar 

  68. Moslemian R, Berggreen C (2013) Interface fatigue crack propagation in sandwich X-joints – Part I: Experiments. J Sandw Struct Mater 15(4):1–22

    Google Scholar 

  69. Moslemian R, Berggreen C (2013) Interface fatigue crack propagation in sandwich X-joints – Part II: Finite element modeling. J Sandw Struct Mater 15(4):23–36

    Google Scholar 

  70. Lundsgaard-Larsen C, Berggreen C, Carlsson LA (2010) Tailoring sandwich face/core interfaces for improved damage tolerance - Part I: Finite element analysis. Appl Compos Mater 17(6):609–619

    Article  Google Scholar 

  71. Lundsgaard-Larsen C, Berggreen C, Carlsson LA (2010) Tailoring sandwich face/core interfaces for improved damage tolerance - Part II: Experiments. Appl Compos Mater 17(6):621–637

    Article  Google Scholar 

  72. Martakos G, Andreasen JH, Berggreen C, Thomsen OT (2017) Interfacial crack arrest in sandwich panels with embedded crack stoppers subjected to fatigue loading. Appl Compos Mater 24:55–76. https://doi.org/10.1007/s10443-016-9514-3

    Article  Google Scholar 

  73. Martakos G, Andreasen JH, Berggreen C, Thomsen OT (2019) Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device. J Sandw Struct Mater 21(2):401–421. https://doi.org/10.1177/1099636217695057

    Article  Google Scholar 

  74. Martakos G, Andreasen JH, Berggreen C, Thomsen OT (2019) Interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device - numerical modelling. J Sandw Struct Mater 21(2):422–438. https://doi.org/10.1177/1099636217695058

    Article  Google Scholar 

  75. Hayman B, Berggreen C, Petterson R (2007) Tests and analyses of FRP sandwich structures with face sheet wrinkles. J Sandw Struct Mater 9(4):377–404

    Article  Google Scholar 

  76. Hayman B, Echtermeyer AT (2019) Reduction of strength of GFRP sandwich panels in naval ships by face sheet holes, cracks and impact damage. J Sandw Struct Mater 21:1621–1653. https://doi.org/10.1177/1099636219836357

    Article  CAS  Google Scholar 

  77. Hayman B, Berggreen C (2018) Damage assessment schemes for naval sandwich structures with face-core debonds considering residual strength and fatigue life. In: 12th International Conference on Sandwich Structures, Lausanne, Switzerland, pp 32–34

    Google Scholar 

  78. Farshidi A, Berggreen C (2019) Analysis of disbonded aircraft sandwich panels with unvented honeycomb cores. Compos Part B, submitted 2019

    Google Scholar 

Download references

Acknowledgements

Compilation of this chapter was supported by Office of Naval Research Grant N00014-16-1-2977. The support, interest and encouragement of the ONR Solid Mechanics Program Manager, Dr. Y.D.S. Rajapakse, in this and the other ONR-funded research activities described in the chapter, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Berggreen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berggreen, C., Hayman, B. (2020). Damage Tolerance Assessment of Naval Sandwich Structures with Face-Core Debonds. In: Lee, S. (eds) Advances in Thick Section Composite and Sandwich Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-31065-3_15

Download citation

Publish with us

Policies and ethics