Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 199 Accesses

Abstract

The results of Chaps. 4 and 5 suggest that processes other than microbial incorporation are more important for NO3 cycling in the soil system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenkinson DS (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228:3–15

    Article  CAS  Google Scholar 

  2. Addiscott T, Powlson D (1992) Partitioning losses of nitrogen fertilizer between leaching and denitrification. J Agric Sci 118:101–107

    Article  CAS  Google Scholar 

  3. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48. https://doi.org/10.1111/j.1469-8137.2008.02751.x

    Article  CAS  PubMed  Google Scholar 

  4. Rasmussen J, Kuzyakov Y (2009) Carbon isotopes as proof for plant uptake of organic nitrogen: relevance of inorganic carbon uptake. Soil Biol Biochem 41:1586–1587. https://doi.org/10.1016/j.soilbio.2009.03.006

    Article  CAS  Google Scholar 

  5. Schimel JP, Bennett J (2004) Nitrogen mineralisation: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  6. Falkengren-Grerup U, Månsson KF, Olsson MO (2000) Uptake capacity of amino acids by ten grasses and forbs in relation to soil acidity and nitrogen availability. Environ Exp Bot 44:207–219

    Article  CAS  PubMed  Google Scholar 

  7. Hill PW, Quilliam RS, DeLuca TH, Farrar J, Farrell M, Roberts P, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011) Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS ONE 6:e19220. https://doi.org/10.1371/journal.pone.0019220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mérigout P, Lelandais M, Bitten F, Renou J-P, Briand X, Meyer C, Daniel-Vedele F (2008) Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol 147:1225–1238. https://doi.org/10.1104/pp.108.119339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  10. Näsholm T, Huss-Danell K, Högberg P (2000) Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81:1155–1161

    Article  Google Scholar 

  11. Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci U S A 105:4524–4529. https://doi.org/10.1073/pnas.0712078105

    Article  PubMed  PubMed Central  Google Scholar 

  12. Streeter TC, Bol R, Bardgett RD (2000) Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled (13C, 15N) glycine to test for direct uptake by dominant grasses. Rapid Commun Mass Spectrom 14:1351–1355

    Article  CAS  PubMed  Google Scholar 

  13. Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423. https://doi.org/10.1016/j.soilbio.2004.08.008

    Article  CAS  Google Scholar 

  14. Persson J, Näsholm T (2001) A GC-MS method for determination of amino acid uptake by plants. Physiol Plant 113:352–358

    Article  CAS  PubMed  Google Scholar 

  15. Rasmussen J, Sauheitl L, Eriksen J, Kuzyakov Y (2009) Plant uptake of dual-labeled organic N biased by inorganic C uptake: results of a triple labeling study. Soil Biol Biochem 42:524–527. https://doi.org/10.1016/j.soilbio.2009.11.032

    Article  CAS  Google Scholar 

  16. Warren CR (2012) Post-uptake metabolism affects quantification of amino acid uptake. New Phytol 193:522–531. https://doi.org/10.1111/j.1469-8137.2011.03933.x

    Article  CAS  PubMed  Google Scholar 

  17. Jones DL, Kielland K (2002) Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated Taiga forest soils. Soil Biol Biochem 34:209–219

    Article  CAS  Google Scholar 

  18. Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316. https://doi.org/10.1007/s004420100693

    Article  PubMed  Google Scholar 

  19. Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York, USA, pp 185–186, 204

    Google Scholar 

  20. Weigelt A, Bol R, Bardgett RD (2005) Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627–635

    Article  PubMed  Google Scholar 

  21. Gessler A, Schneider S, von Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138:275–285

    Article  CAS  PubMed  Google Scholar 

  22. Warren CR (2009) Why does temperature affect relative uptake rates of nitrate, ammonium and glycine: a test with Eucalyptus pauciflora. Soil Biol Biochem 41:778–784. https://doi.org/10.1016/j.soilbio.2009.01.012

    Article  CAS  Google Scholar 

  23. Gutschick VP (1981) Evolved strategies in nitrogen acquisition by plants. Am Nat 118:607–637

    Article  CAS  Google Scholar 

  24. Arkoun M, Sarda X, Jannin L, Laîne P, Etienne P, Garcia-Mina J, Yvin J, Ourry A (2012) Hydroponics versus field lysimeter studies of urea, ammonium, and nitrate uptake by oilseed rape (Brassica napus L). J Exp Bot 63:5245–5258

    Article  CAS  PubMed  Google Scholar 

  25. Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  26. Siddiqi MY, Malhotra B, Min X, Glass ADM (2002) Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. J Plant Nutr Soil Sci 165:191–197

    Article  CAS  Google Scholar 

  27. Bloom AJ, Randall L, Taylor AR, Silk WK (2012) Deposition of ammonium and nitrate in the roots of maize seedlings supplied with different nitrogen salts. J Exp Bot 63:1997–2006. https://doi.org/10.1093/jxb/err410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yara (2011) Pure nutrient nitrate fertiliser. Report available from http://yara.com/products_services/fertilizers/pure_nutrient/pure_nutrient_brochure.aspx. Accessed 26 Mar 2014

  29. Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–415

    Article  Google Scholar 

  30. Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. https://doi.org/10.1111/nph.12235

    Article  PubMed  Google Scholar 

  31. Garnett T, Conn V, Plett D, Conn S, Zanghellini J, Mackenzie N, Enju A, Francis K, Holtham L, Roessner U, Boughton B, Bacic A, Shirley N, Rafalski A, Dhugga K, Tester M, Kaiser BN (2013) The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytol. https://doi.org/10.1111/nph.12166

    Article  PubMed  Google Scholar 

  32. Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coruzzi G (2003) Primary N-assimilation into amino acids. In: Arabidopsis, The Arabidopsis Book, p e0010. https://doi.org/10.1199/tab.0010

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  35. Kaštovská E, Šantrůčková H (2011) Comparison of uptake of different N forms by soil microorganisms and two wet-grassland plants: a pot study. Soil Biol Biochem 43:1285–1291. https://doi.org/10.1016/j.soilbio.2011.02.021

    Article  CAS  Google Scholar 

  36. Neff JC, Chapin FS III, Vitousek PM (2003) Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Front Ecol Environ 1:205–211

    Article  Google Scholar 

  37. Inselsbacher E, Hinko-Najera Umana N, Stange FC, Gorfer M, Schüller E, Ripka K, Zechmeister-Boltenstern S, Hood-Novotny R, Strauss J, Wanek W (2010) Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biol Biochem 42:360–372. https://doi.org/10.1016/j.soilbio.2009.11.019

    Article  CAS  Google Scholar 

  38. Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 126:145–173. https://doi.org/10.1111/aab.12014

    Article  CAS  Google Scholar 

  39. Redmile-Gordon MA, Armenise E, Hirsch PR, Brookes PC (2014) Biodiesel co-product (BCP) decreases soil nitrogen (N) losses to groundwater. Water Air Soil Pollut 225:1831. https://doi.org/10.1007/s11270-013-1831-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lord EI, Shepherd MA (1993) Developments in the use of porous ceramic cups for measuring nitrate leaching. J Soil Sci 44:435–449

    Article  CAS  Google Scholar 

  41. Grossmann J, Udluft P (1991) The extraction of soil water by the suction-cup method: a review. J Soil Sci 42:83–93

    Article  Google Scholar 

  42. Briggs L, McCall A (1904) An artificial root for inducing capillary movement of soil moisture. Science 513:566–569

    Article  Google Scholar 

  43. Addiscott TM (1996) Measuring and modelling nitrogen leaching: parallel problems. Plant Soil 181:1–6

    Article  CAS  Google Scholar 

  44. Barbee G, Brown K (1986) Comparison between suction and free-drainage soil solution samplers. Soil Sci 141:149–154

    Article  CAS  Google Scholar 

  45. Curley EM, O’Flynn MG, McDonnell KP (2011) The use of porous ceramic cups for sampling soil pore water from the unsaturated zone. Int J Soil Sci 6:1–11. https://doi.org/10.3923/ijss.2011.1.11

    Article  Google Scholar 

  46. Webster CP, Shepherd MA, Goulding KWT, Lord E (1993) Comparisons of methods for measuring the leaching of mineral nitrogen from arable land. J Soil Sci 44:49–62

    Article  CAS  Google Scholar 

  47. Hatch DJ, Jarvis SC, Rook AJ, Bristow AW (1997) Ionic contents of leachate from grassland soils: a comparison between ceramic suction cup samples and drainage. Soil Use Manage 13:68–74

    Article  Google Scholar 

  48. Asano Y, Compton JE, Robbins Church M (2006) Hydrologic flow paths influence inorganic and organic nutrient leaching in a forest soil. Biochemistry 81:191–204

    CAS  Google Scholar 

  49. Gazis C, Feng X (2004) A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 119(1–2):97–111

    Article  Google Scholar 

  50. Bailey RJ, Spackman E (1996) A model for estimating soil moisture changes as an aid to irrigation scheduling and crop water-use studies: I. Operation details and description. Soil Use Manage 12:122–128

    Article  Google Scholar 

  51. Bailey RJ, Groves SJ, Spackman E (1996) A model for estimating soil moisture changes as an aid to irrigation scheduling and crop water-use studies: II. Field test of the model. Soil Use Manage 12:129–133

    Article  Google Scholar 

  52. Silgram M, Hatley D, Gooday R (2007) IRRIGUIDE: a decision support tool for drainage estimation and irrigation scheduling. ADAS UK Ltd

    Google Scholar 

  53. Defra (2010) Fertiliser Manual (RB209), pp 60, 65. Report available from http://www.ahdb.org.uk/projects/CropNutrition.aspx. Accessed 26 Mar 2014

  54. Scholl M (2006) Precipitation isotope collector designs. U.S. Geological Survey. http://water.usgs.gov/nrp/proj.bib/hawaii/precip_methods.htm. Accessed 1 Oct 2014

  55. Spangenberg JE (2012) Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis. Rapid Commun Mass Spectrom 26:2627–2636. https://doi.org/10.1002/rcm.6386

    Article  CAS  PubMed  Google Scholar 

  56. Krom MD (1980) Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. The Analyst 105:305–316

    Article  CAS  Google Scholar 

  57. Searle PL (1984) The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen: a review. Analyst 109:549–568

    Article  CAS  Google Scholar 

  58. Bratton A, Marshall E (1939) A new coupling component for sulfanilamide determination. J Biol Chem 128:537–550

    CAS  Google Scholar 

  59. Irandoust M, Shariati-Rad M, Haghighi M (2013) Nitrite determination in water samples based on a modified Griess reaction and central composite design. Anal Methods 5:5977–5982. https://doi.org/10.1039/c3ay40913a

    Article  CAS  Google Scholar 

  60. Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the l-arginine/nitric oxide area of research. J Chromatogr B 851(1–2):51–70

    Article  CAS  Google Scholar 

  61. Gal C, Frenzel W, Möller J (2004) Re-examination of the cadmium reduction method and optimisation of conditions for the determination of nitrate by flow injection analysis. Microchim Acta 146:155–164. https://doi.org/10.1007/s00604-004-0193-7

    Article  CAS  Google Scholar 

  62. Henriksen A, Selmer-Olsen AR (1970) Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 95:514–518

    Article  CAS  Google Scholar 

  63. Patton CJ, Kryskalla JR (2011) Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods, In: Techniques and methods, Section B, Methods of the National Water Quality Laboratory Book 5, Laboratory Analysis, U.S. Geological Survey, Reston, Virginia, USA

    Google Scholar 

  64. Johnes PJ, Heathwaite AL (1992) A procedure for the simultaneous determination of total nitrogen and total phosphorus in fresh water samples using persulphate microwave digestion. Water Res 26:1281–1287

    Article  CAS  Google Scholar 

  65. Picarro (2010) ChemCorrectTM—Solving the problem of chemical contaminants in H2O stable isotope research. Picarro, Inc., Sunnyvale, California, USA

    Google Scholar 

  66. Brand WA, Geilmann H, Crosson ER, Rella CW (2009) Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures. Rapid Commun Mass Spectrom 23:1879–1884

    Article  CAS  PubMed  Google Scholar 

  67. West AG, Goldsmith GR, Brooks PD, Dawson TE (2010) Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Commun Mass Spectrom 24:1948–1954. https://doi.org/10.1002/rcm.4597

    Article  CAS  PubMed  Google Scholar 

  68. Bouwman AF, Boumans JM, Batjes NH (2002) Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Global Biogeochem Cycles 16:1024. https://doi.org/10.1029/2000GB001389

    Article  CAS  Google Scholar 

  69. Hojito M, Hayashi K, Matsuura S (2010) Ammonia exchange on grasslands in an intensive dairying region in central Japan. Soil Sci Plant Nutr 56:503–511. https://doi.org/10.1111/j.1747-0765.2010.00466.x

    Article  CAS  Google Scholar 

  70. Fenn ME, Poth MA, Schilling SL, Grainger DB (2000) Throughfall and fog deposition of nitrogen and sulfur at an N-limited and N-saturated site in the San Bernardino Mountains, Southern California. Can J For Res 30:1476–1488

    Article  Google Scholar 

  71. CEH (2016) Nitrogen atmospheric Concentration Based Estimated Deposition (CBED) data for the UK 2012. Accessed 18 Apr 2016

    Google Scholar 

  72. Coplen TB, Hopple JA, Böhlke JK, Peiser HS, Rieder SE, Krouse HR, Rosman KJR, Ding T, Vocke RD Jr, Révész KM, Lamberty A, Taylor P, De Bièvre P (2002) Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. U.S. Geological Survey Water Resources Investigations Report 01-4222, U.S. Geological Survey, Denver, USA

    Google Scholar 

  73. Nila Rekha P, Kanwar RS, Nayak AK, Hoang CK, Pederson CH (2011) Nitrate leaching to shallow groundwater systems from agricultural fields with different management practices. J Environ Monit 13:2550–2558

    Article  CAS  PubMed  Google Scholar 

  74. Wang Q, Cameron K, Buchan G, Zhao L, Zhang EH, Smith N, Carrick S (2012) Comparison of lysimeters and porous ceramic cups for measuring nitrate leaching in different soil types. N Z J Agric Res 55:333–345. https://doi.org/10.1080/00288233.2012.706224

    Article  CAS  Google Scholar 

  75. Granger SJ, Heaton THE, Bol R, Bilotta GS, Bulter P, Haygarth PM, Owens PN (2008) Using δ15N and δ18O to evaluate the sources and pathways of NO 3 in rainfall event discharge from drained agricultural grassland lysimeters at high temporal resolutions. Rapid Commun Mass Spectrom 22:1681–1689

    Article  CAS  PubMed  Google Scholar 

  76. Stuart ME, Chilton PJ, Kinniburgh DG, Cooper DM (2007) Screening for long-term trends in groundwater nitrate monitoring data. Q J Eng Geol Hydrogeol 40:361–376

    Article  CAS  Google Scholar 

  77. Stuart ME, Chilton PJ, Butcher AS (2008) Nitrate fluctuations in groundwater: review of potential mechanisms and application to case studies. British Geological Survey, Groundwater Science Programme, Open Report OR/08/046

    Google Scholar 

  78. Yuan Z, Liu W, Niu S, Wan S (2007) Plant nitrogen dynamics and nitrogen-use strategies under altered nitrogen seasonality and competition. Ann Bot 100:821–830. https://doi.org/10.1093/aob/mcm178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jarvis SC, Macduff JM (1989) Nitrate nutrition of grasses from steady-state supplies in flowing solution culture following nitrate deprivation and/or defoliation. J Exp Bot 40:965–975

    Article  Google Scholar 

  80. Bowman CB, Paul JI (1992) Foliar absorption of urea, ammonium, and nitrate by perennial ryegrass turf. J Am Soc Hortic Sci 117:75–79

    Article  Google Scholar 

  81. Goulding KWT, Webster CP, Powlson DS, Poulton PR (1993) Denitrification losses of nitrogen fertiliser applied to winter wheat following ley and arable rotations as estimated by acetylene inhibition and 15N balance. J Soil Sci 44:63–72

    Article  CAS  Google Scholar 

  82. Holbeck B, Amelung W, Wolf A, Südekum K-H, Schloter M, Welp G (2013) Recoveries of 15N-labelled fertilisers (chicken manure, mushroom compost and potassium nitrate) in arable topsoil after autumn application to winter cover crops. Soil Tillage Res 130:120–127

    Article  Google Scholar 

  83. Sieling K, Kage H (2006) N balance as an indicator of N leaching in an oilseed rape—winter wheat—winter barley rotation. Agric Ecosyst Environ 115:261–269

    Article  CAS  Google Scholar 

  84. Goulding KWT, Poulton PR, Webster CP, Howe MT (2000) Nitrate leaching from the Broadbalk Wheat Experiment, Rothamsted, UK, as influenced by fertilizer and manure inputs and the weather. Soil Use Manag 16(4):244–250

    Article  Google Scholar 

  85. Darling WG, Talbot JC (2003) The O & H stable isotopic composition of fresh waters in the British Isles. 1. Rainfall. Hydrol Earth Syst Sci 7:163–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Fiona Charteris .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charteris, A. (2019). 15N Tracing of the Partitioning and Transport of Nitrate Under Field Conditions. In: 15N Tracing of Microbial Assimilation, Partitioning and Transport of Fertilisers in Grassland Soils. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31057-8_6

Download citation

Publish with us

Policies and ethics