Skip to main content

An Overview of Polynomially Computable Characteristics of Special Interval Matrices

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 835))

Abstract

It is well known that many problems in interval computation are intractable, which restricts our attempts to solve large problems in reasonable time. This does not mean, however, that all problems are computationally hard. Identifying polynomially solvable classes thus belongs to important current trends. The purpose of this paper is to review some of such classes. In particular, we focus on several special interval matrices and investigate their convenient properties. We consider tridiagonal matrices, {M, H, P, B}-matrices, inverse M-matrices, inverse nonnegative matrices, nonnegative matrices, totally positive matrices and some others. We focus in particular on computing the range of the determinant, eigenvalues, singular values, and selected norms. Whenever possible, we state also formulae for determining the inverse matrix and the hull of the solution set of an interval system of linear equations. We survey not only the known facts, but we present some new views as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Adm, J. Garloff, Intervals of totally nonnegative matrices. Linear Algebr. Appl. 439(12), 3796–3806 (2013)

    Article  MathSciNet  Google Scholar 

  2. G. Alefeld, Über die Durchführbarkeit des Gaußschen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten. Comput. Suppl. 1, 15–19 (1977)

    Article  Google Scholar 

  3. G. Alefeld, V. Kreinovich, G. Mayer, On the shape of the symmetric, persymmetric, and skew-symmetric solution set. SIAM J. Matrix Anal. Appl. 18(3), 693–705 (1997)

    Article  MathSciNet  Google Scholar 

  4. G. Alefeld, V. Kreinovich, G. Mayer, On the solution sets of particular classes of linear interval systems. J. Comput. Appl. Math. 152(1–2), 1–15 (2003)

    Article  MathSciNet  Google Scholar 

  5. I. Bar-On, B. Codenotti, M. Leoncini, Checking robust nonsingularity of tridiagonal matrices in linear time. BIT 36(2), 206–220 (1996)

    Article  MathSciNet  Google Scholar 

  6. W. Barth, E. Nuding, Optimale Lösung von Intervallgleichungssystemen. Computing 12, 117–125 (1974)

    Article  MathSciNet  Google Scholar 

  7. H. Beeck, Zur scharfen Aussenabschätzung der Lösungsmenge bei linearen Intervallgleichungssystemen. ZAMM, Z. Angew. Math. Mech. 54, T208–T209 (1974)

    Google Scholar 

  8. S. Białas, J. Garloff, Intervals of P-matrices and related matrices. Linear Algebr. Appl. 58, 33–41 (1984)

    Article  MathSciNet  Google Scholar 

  9. G.E. Coxson, The P-matrix problem is co-NP-complete. Math. Program. 64, 173–178 (1994)

    Article  MathSciNet  Google Scholar 

  10. L. Cvetković, V. Kostić, S. Rauški, A new subclass of H-matrices. Appl. Math. Comput. 208(1), 206–210 (2009)

    MathSciNet  MATH  Google Scholar 

  11. S.M. Fallat, C.R. Johnson, Totally Nonnegative Matrices (Princeton University Press, Princeton, NJ, 2011)

    Book  Google Scholar 

  12. M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann, Linear Optimization Problems with Inexact Data (Springer, New York, 2006)

    MATH  Google Scholar 

  13. J. Garloff, Totally nonnegative interval matrices, in ed. by K. Nickel, Interval Mathematics 1980, (Academic, 1980), pp. 317–327

    Google Scholar 

  14. J. Garloff, Criteria for sign regularity of sets of matrices. Linear Algebr. Appl. 44, 153–160 (1982)

    Article  MathSciNet  Google Scholar 

  15. J. Garloff, M. Adm, J. Titi, A survey of classes of matrices possessing the interval property and related properties. Reliab. Comput. 22, 1–10 (2016)

    MathSciNet  Google Scholar 

  16. D. Hartman, M. Hladík, Tight bounds on the radius of nonsingularity, in Scientific Computing, Computer Arithmetic, and Validated Numerics: 16th International Symposium, SCAN 2014 ed. by M. Nehmeier et al., Würzburg, Germany, September 21-26, LNCS, vol. 9553, (Springer, Berlin, 2016), pp. 109–115

    Google Scholar 

  17. D. Hartman, M. Hladík, Regularity radius: properties, approximation and a not a priori exponential algorithm. Electron. J. Linear Algebr. 33, 122–136 (2018)

    Article  MathSciNet  Google Scholar 

  18. M. Hladík, Complexity issues for the symmetric interval eigenvalue problem. Open Math. 13(1), 157–164 (2015)

    MathSciNet  MATH  Google Scholar 

  19. M. Hladík, On relation between P-matrices and regularity of interval matrices, in Springer Proceedings in Mathematics & Statistics ed. by N. Bebiano, Applied and Computational Matrix Analysis, vol. 192, (Springer, Berlin, 2017), pp. 27–35

    Google Scholar 

  20. M. Hladík, Positive semidefiniteness and positive definiteness of a linear parametric interval matrix, in Constraint Programming and Decision Making: Theory and Applications, Studies in Systems, Decision and Control, vol. 100, ed. by M. Ceberio, V. Kreinovich (Springer, Cham, 2018), pp. 77–88

    Chapter  Google Scholar 

  21. J. Horáček, M. Hladík, M. Černý, Interval linear algebra and computational complexity, in Springer Proceedings in Mathematics & Statistics ed. by N. Bebiano, Applied and Computational Matrix Analysis, vol. 192, (Springer, Berlin, 2017), pp. 37–66

    Google Scholar 

  22. J. Horáček, M. Hladík, J. Matějka, Determinants of interval matrices. Electron. J. Linear Algebr. 33, 99–112 (2018)

    Article  MathSciNet  Google Scholar 

  23. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1991)

    Google Scholar 

  24. C.R. Johnson, R.L. Smith, Intervals of inverse M-matrices. Reliab. Comput. 8(3), 239–243 (2002)

    Article  MathSciNet  Google Scholar 

  25. C.R. Johnson, R.L. Smith, Inverse M-matrices, II. Linear Algebr. Appl. 435(5), 953–983 (2011)

    Article  MathSciNet  Google Scholar 

  26. O. Kosheleva, V. Kreinovich, G. Mayer, H. Nguyen, Computing the cube of an interval matrix is NP-hard. Proc. ACM Symp. Appl. Comput. 2, 1449–1453 (2005)

    Google Scholar 

  27. V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl, Computational Complexity and Feasibility of Data Processing and Interval Computations (Kluwer, Dordrecht, 1998)

    Book  Google Scholar 

  28. J. Kuttler, A fourth-order finite-difference approximation for the fixed membrane eigenproblem. Math. Comput. 25(114), 237–256 (1971)

    Article  MathSciNet  Google Scholar 

  29. G. Mayer, Three short descriptions of the symmetric and of the skew-symmetric solution set. Linear Algebr. Appl. 475, 73–79 (2015)

    Article  MathSciNet  Google Scholar 

  30. D.N. Mohsenizadeh, L.H. Keel, S.P. Bhattacharyya, An extremal result for unknown interval linear systems. IFAC Proc. Vol. 47(3), 6502–6507 (2014)

    Article  Google Scholar 

  31. A. Neumaier, Interval Methods for Systems of Equations (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  32. A. Neumaier, A simple derivation of the Hansen–Bliek–Rohn–Ning–Kearfott enclosure for linear interval equations. Reliab. Comput. 5(2), 131–136 (1999)

    Article  MathSciNet  Google Scholar 

  33. S. Ning, R.B. Kearfott, A comparison of some methods for solving linear interval equations. SIAM J. Numer. Anal. 34(4), 1289–1305 (1997)

    Article  MathSciNet  Google Scholar 

  34. J.M. Peña, A class of \(P\)-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22(4), 1027–1037 (2001)

    Article  MathSciNet  Google Scholar 

  35. S. Poljak, J. Rohn, Checking robust nonsingularity is NP-hard. Math. Control Signals Syst. 6(1), 1–9 (1993)

    Article  MathSciNet  Google Scholar 

  36. E.D. Popova, Explicit characterization of a class of parametric solution sets. Comptes Rendus de L’Academie Bulg. des Sci. 62(10), 1207–1216 (2009)

    MathSciNet  MATH  Google Scholar 

  37. J. Rohn, Checking positive definiteness or stability of symmetric interval matrices is NP-hard. Comment. Math. Univ. Carol. 35(4), 795–797 (1994)

    MathSciNet  MATH  Google Scholar 

  38. J. Rohn, Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 15(1), 175–184 (1994)

    Article  MathSciNet  Google Scholar 

  39. J. Rohn, Computing the norm \(\Vert A\Vert _{\infty,1}\) is NP-hard. Linear Multilinear Algebr. 47(3), 195–204 (2000)

    Article  MathSciNet  Google Scholar 

  40. J. Rohn, R. Farhadsefat, Inverse interval matrix: a survey. Electron. J. Linear Algebr. 22, 704–719 (2011)

    MathSciNet  MATH  Google Scholar 

  41. S.M. Rump, On P-matrices. Linear Algebr. Appl. 363, 237–250 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The author was supported by the Czech Science Foundation Grant P403-18-04735S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hladík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hladík, M. (2020). An Overview of Polynomially Computable Characteristics of Special Interval Matrices. In: Kosheleva, O., Shary, S., Xiang, G., Zapatrin, R. (eds) Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications. Studies in Computational Intelligence, vol 835. Springer, Cham. https://doi.org/10.1007/978-3-030-31041-7_16

Download citation

Publish with us

Policies and ethics