Abstract
Industrial Internet of Things has become a reality in many kind of industries. In this paper, We explore the case of high quantity of raw data generated by a machine. In the aforementioned case is not viable store and process the data in a traditional Internet of Things architecture. For this case, We use an architecture based on edge computing and Industrial Internet of Things concepts and apply them to a case of machine monitoring for predictive maintenance. The proof of concept shows the potential benefits in real industrial applications.
Keywords
- Edge Computing
- Industrial Internet of Things
- Predictive maintenance
This is a preview of subscription content, access via your institution.
Buying options



References
Gregori, F., Papetti, A., Pandolfi, M., Peruzzini, M., Germani, M.: Improving a production site from a social point of view: an IoT infrastructure to monitor workers condition. Procedia CIRP 72, 886–891 (2018). https://doi.org/10.1016/j.procir.2018.03.057. http://www.sciencedirect.com/science/article/pii/S2212827118301598. ISSN2212-8271
Edge computing consortium. White paper of edge computing consortium (2016)
Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial Internet of Things (IIoT): an analysis framework. Comput. Ind. 101, 1–12 (2018). https://doi.org/10.1016/j.compind.2018.04.015. http://www.sciencedirect.com/science/article/pii/S0166361517307285. ISSN 0166-3615
Civerchia, F., Bocchino, S., Salvadori, C., Rossi, E., Maggiani, L., Petracca, M.: Industrial Internet of Things monitoring solution for advanced predictive maintenance applications. J. Ind. Inf. Integr. 7, 4–12 (2017). https://doi.org/10.1016/j.jii.2017.02.003. http://www.sciencedirect.com/science/article/pii/S2452414X16300954. ISSN 2452-414X
Quinn, J.: The real goal of maintenance engineering, in factory. In: Collins, A.W. (ed.) The Measurement of Naval Facilities Maintenance Effectiveness. Naval Postgraduate School, Monterey CA, p. 90-3 (1964)
Cao, J., Zhang, Q., Li, Y., Shi, W., Xu, L.: Edge computing: vision and challenges. IEEE IoT J. 3(16286981), 637–646 (2016)
Industrial Internet Consortium. Introduction to edge computing in IIoT. An Industrial Internet Consortium White Paper, IIC:WHT:IN24:V1.0:PB:20180618. Edge Computing Task Group
Schmidt, B., Wang, L., Galar, D.: Semantic framework for predictive maintenance in a cloud environment. Procedia CIRP 62, 583–588 (2017). https://doi.org/10.1016/j.procir.2016.06.047. ISSN 2212-8271
Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-adaptive applications within edge computing frameworks: a state-of-the-art review. J. Syst. Softw. 136(Suppl. C), 19–38 (2018)
Fujishima, M., Mori, M., Nishimura, K., Takayama, M., Kato, Y.: Development of sensing interface for preventive maintenance of machine tools. Procedia CIRP 61, 796–799 (2017). https://doi.org/10.1016/j.procir.2016.11.206. http://www.sciencedirect.com/science/article/pii/S2212827116313749. ISSN 2212-8271
Cruz, A.M.E.: ESTUDIO DE UN SISTEMA DE MANTENIMIENTO PREDICTIVO BASADO EN ANÁLISIS DE VIBRACIONES IMPLANTADO EN INSTALACIONES DE BOMBEO Y GENERACIÓN (2013)
Power-MI, Manual Análisis de Vibraciones. https://power-mi.com/es/content/power-mi-lanza-manual-de-an
Pease, S.G., Conway, P.P., West, A.A.: Hybrid ToF and RSSI real-time semantic tracking with an adaptive industrial internet of things architecture. J. Netw. Comput. Appl. 99, 98–109 (2017)
Flores, R., Asiaín, T.I.: Diagnóstico de Fallas en Máquinas Eléctricas Rotatorias Utilizando la Técnica de Espectros de Frecuencia de Bandas Laterales. Información Tecnológica 22(4), 73–84 (2011). https://doi.org/10.4067/S0718-07642011000400009
Talbot, C.E., Saavedra, P.N., Valenzuela, M.A.: Diagnóstico de la Condición de las Barras de Motores de Inducción. Información tecnológica 24(4), 85–94 (2013). https://doi.org/10.4067/S0718-07642013000400010
Lin, S.-W.: Architecture alignment and interoperability (2017)
Mourtzis, D., Gargallis, A., Zogopoulos, V.: Modelling of customer oriented applications in product lifecycle using RAMI 4.0. Procedia Manuf. 28, 31–36 (2019). https://doi.org/10.1016/j.promfg.2018.12.006. http://www.sciencedirect.com/science/article/pii/S2351978918313489. ISSN 2351-9789
Lin, S.W., et al.: Industrial internet reference architecture. Technical report, Industrial Internet Consortium (IIC) (2015)
Packard, H.: Real-time analysis and condition monitoring with predictive maintenance. Transforming data into value with HPE Edgeline (2017)
Gierej, S.: The framework of business model in the context of industrial Internet of Things. Procedia Eng. 182, 206–212 (2017). https://doi.org/10.1016/j.proeng.2017.03.166. http://www.sciencedirect.com/science/article/pii/S1877705817313024. ISSN 1877-7058
Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE IoT J. 3(5), 637–646 (2016)
Barroso, M., Dolores, M.: Edge computing para IoT (2019)
Bossio, G., De Angelo, C., García, G.: Técnicas de Mantenimiento Predictivo en Máquinas Eléctricas: Diagnóstico de Fallas en el Rotor de los Motores de Inducción. Megavatios, pp. 194–208 (2006)
Bellini, A., et al.: On-field experience with online diagnosis of large induction motors cage failures using MCSA. IEEE Trans. Ind. Appl. 38(4), 1045–1053 (2002). https://doi.org/10.1109/TIA.2002.800591
Acknowledgments
The authors would like acknowledge the cooperation of all partners within the Centro de Excelencia y Apropiación en Internet de las Cosas (CEA-IoT) project. The authors would also like to thank all the institutions that supported this work: the Colombian Ministry for the Information and Communications Technology (Ministerio de Tecnologías de la Información y las Comunicaciones - MinTIC) and the Colombian Administrative Department of Science, Technology and Innovation (Departamento Administrativo de Ciencia, Tecnología e Innovación - Colciencias) through the Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas (Project ID: FP44842-502-2015).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
De Leon, V., Alcazar, Y., Villa, J.L. (2019). Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_44
Download citation
DOI: https://doi.org/10.1007/978-3-030-31019-6_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31018-9
Online ISBN: 978-3-030-31019-6
eBook Packages: Computer ScienceComputer Science (R0)