Skip to main content

Decoupling Method to Solve Inverse Kinematics for Assistant Robot

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2019)

Abstract

Inverse kinematics solution for a six degree of freedom assistant robot will be presented in this work. Denavit-Hartenberg parameters and decoupling method will be used to find a closed solution for the robot. Novel approach to analyze torso and arm assistant robot will be described and inverse kinematics solution will be detailed. Arm Work-space and augmented work-space (including torso) will be compared. Experiments, simulations and results of the proposed algorithm will be presented as well as a discussion of them.

Supported by Corporación Unificada Nacional de Educación Superior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, Y., Chen, M., Yang, G.: Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. IEEE Trans. Robot. 22(3), 545–551 (2006)

    Article  Google Scholar 

  2. Goldenberg, A., Lawrence, D.: A generalized solution to the inverse kinematics of robot manipulator. J. Dyn. Syst. Measur. Control (1985)

    Google Scholar 

  3. Iliukhin, V., Mitkovskii, K., Bizyanova, D., Akopyan, A.: The modeling of inverse kinematics for 5 DOF manipulator. Proc. Eng. 176, 498–505 (2017)

    Article  Google Scholar 

  4. Kurt, S.: Augmentable multi-vertebrated modular space station robot. Proc. Soc. Behav. Sci. 195, 2612–2617 (2015)

    Article  Google Scholar 

  5. Pataky, T., Vanrenterghem, J., Robinson, M.: Bayesian inverse kinematics vs. least-squares inverse kinematics in estimates of planar postures and rotations in the absence of soft tissue artifact. J. Biomech. 82, 324–329 (2019)

    Article  Google Scholar 

  6. Ram, R., Pathak, P.M., Junco, S.: Inverse kinematics of mobile manipulator using bidirectional particle swarm optimization by manipulator decoupling. Mech. Mach. Theory 131, 385–405 (2019)

    Article  Google Scholar 

  7. Zhai, G., Zheng, H., Zhang, B.: Observer-based control for the platform of a tethered space robot. Chin. J. Aeronaut. 31, 1786–1796 (2018)

    Article  Google Scholar 

  8. El-Sherbiny, A., Elhosseini, M., Haikal, A.: A comparative study of soft computing methods to solve inverse kinematics problem. Ain Shams Eng. J. 9, 2535–2548 (2018)

    Article  Google Scholar 

  9. McEvoya, A., Corrella, N.: Distributed inverse kinematics for shape-changing robotic materials. Proc. Technol. 26, 4–11 (2016)

    Article  Google Scholar 

  10. Sancaktar, I., Tuna, B., Ulutas, M.: Inverse kinematics application on medical robot using adapted PSO method. Eng. Sci. Technol. Int. J. 21, 1006–1010 (2018)

    Article  Google Scholar 

  11. Mohana, R., Tan, N., Tjoelsen, K., Sosa, R.: Designing the robot inclusive space challenge. Dig. Commun. Netw. 1, 267–274 (2015)

    Article  Google Scholar 

  12. Atique, M., Sarker, R., Ahad, A.: Development of an 8DOF quadruped robot and implementation of Inverse Kinematics using Denavit- Hartenberg convention. Heliyon 4(12), e01053 (2018)

    Article  Google Scholar 

  13. Somov, Y., Butyrin, S., Somova, T.: Control of a free-flying robot at preparation for capturing a passive space vehicle. IFAC-PapersOn Line 51, 72–76 (2018)

    Article  Google Scholar 

  14. Frisyras, E., Moulianitis, V., Aspragathos, N.: ANNs to approximate all the inverse kinematic solutions of non-cuspidal manipulators. IFAC-PapersOn Line 51, 418–423 (2018)

    Article  Google Scholar 

  15. Wen, S., Ma, Z., Wen, S.: The study of NAO robot arm based on direct kinematics by using D-H method (2014)

    Google Scholar 

  16. Moin, A., Rahman, A.: Inverse kinematics solution for a 3DOF robotic structure using Denavit-Hartenberg convention. In: International Conference on Informatics, Electronics and Vision, ICIEV 2014, pp. 1–5 (2014)

    Google Scholar 

  17. Orfanoudakis, E., Lagoudakis, M., Kofinas, N.: Complete analytical inverse kinematics for NAO. In: 13th International Conference on Autonomous Robot Systems, pp. 1–6 (2013)

    Google Scholar 

  18. Kofinas, N., Orfanoudakis, E., Lagoudakis, M.: Complete analytical forward and inverse kinematics for the NAO humanoid robot. J. Intell. Robot. Syst. 77, 251–264 (2015)

    Article  Google Scholar 

  19. Becerra, Y., Leon, J., Orjuela, S., Arbulu, M., Matinez, F., Martinez, F.: Smart manipulation approach for assistant robot. In: Zelinka, I., Brandstetter, P., Trong Dao, T., Hoang Duy, V., Kim, S.B. (eds.) AETA 2018. LNEE, vol. 554, pp. 904–913. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14907-9_87

    Chapter  Google Scholar 

  20. Gouaillier, D., Blazevic, P.: A mechatronic platform, the Aldebaran robotics humanoid robot. In: 32nd Annual Conference on IEEE Industrial Electronics, IECON 2006 (2007)

    Google Scholar 

  21. Barrientos, A.: Fundamentos De Robótica, 2nd edn. McGRAW-HILL, New York (2007)

    Google Scholar 

  22. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeyson Becerra or Sebastian Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becerra, Y., Soto, S. (2019). Decoupling Method to Solve Inverse Kinematics for Assistant Robot. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics