Abstract
In this paper we introduce a metaheuristic for optimisation of discrete binary problems, derived from a recently proposed particle swarm algorithm inspired on the foraging behaviour of urban pigeons. The new variant of the algorithm is obtained by mapping the real–valued search space of the original version into a discrete binary–valued encoding. We illustrate the feasibility of the method on several binary benchmark problems and we study the impact of different running parameters such as problem dimension, population size and maximum number of evaluations. The potential of the method and possible extensions for improvement are also discussed.
Keywords
- Metaheuristics
- Particle Swarm Optimisation
- Binary optimisation benchmarks
This is a preview of subscription content, access via your institution.
Buying options
References
Blanco, A., Chaparro, N., Rojas-Galeano, S.: An urban pigeon-inspired optimiser for unconstrained continuous domains. In: 8th Brazilian Conference on Intelligent Systems (BRACIS). IEEE Xplore Digital Library (2019)
Bolaji, A.L., Babatunde, B.S., Shola, P.B.: Adaptation of binary pigeon-inspired algorithm for solving multidimensional Knapsack problem. In: Pant, M., Ray, K., Sharma, T.K., Rawat, S., Bandyopadhyay, A. (eds.) Soft Computing: Theories and Applications. AISC, vol. 583, pp. 743–751. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5687-1_66
Brabazon, A., Cui, W., O’Neill, M.: The raven roosting optimisation algorithm. Soft Comput. 20(2), 525–545 (2016)
Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., Paredes, F.: Putting continuous metaheuristics to work in binary search spaces. Complexity 2017, 19 (2017)
Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1
Duan, H., Qiao, P.: Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 7(1), 24–37 (2014)
Goel, S.: Pigeon optimization algorithm: a novel approach for solving optimization problems. In: 2014 International Conference on Data Mining and Intelligent Computing (ICDMIC), pp. 1–5. IEEE (2014)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108. IEEE (1997)
Lamy, J.-B.: Artificial Feeding Birds (AFB): a new metaheuristic inspired by the behavior of pigeons. In: Shandilya, S.K., Shandilya, S., Nagar, A.K. (eds.) Advances in Nature-Inspired Computing and Applications. EICC, pp. 43–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96451-5_3
Meng, X.B., Gao, X.Z., Lu, L., Liu, Y., Zhang, H.: A new bio-inspired optimisation algorithm: bird swarm algorithm. J. Exp. Theor. Artif. Intell. 28(4), 673–687 (2016)
Merelo, J.J., Laredo, J.L.J., Castillo, P.A., García-Valdez, J.-M., Rojas-Galeano, S.: Exploring concurrent and stateless evolutionary algorithms. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 405–412. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_27
Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, pp. 9–32. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32444-5_2
Spennemann, D.H., Watson, M.J.: Dietary habits of urban pigeons (columba livia) and implications of excreta PH-a review. Eur. J. Ecol. 3(1), 27–41 (2017)
Torabi, S., Safi-Esfahani, F.: Improved Raven Roosting Optimization algorithm (IRRO). Swarm Evol. Comput. 40, 144–154 (2018)
Yang, Z., Liu, K., Fan, J., Guo, Y., Niu, Q., Zhang, J.: A novel binary/real-valued pigeon-inspired optimization for economic/environment unit commitment with renewables and plug-in vehicles. Sci. China Inf. Sci. 62(7), 070213 (2019)
Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2337–2344. IEEE (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rojas-Galeano, S. (2019). Binary Optimisation with an Urban Pigeon-Inspired Swarm Algorithm. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-31019-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31018-9
Online ISBN: 978-3-030-31019-6
eBook Packages: Computer ScienceComputer Science (R0)