Mental Capacities of Fishes

Part of the Advances in Neuroethics book series (AIN)


Fish models are increasingly used in a wide variety of experimental contexts and their adoption is growing globally. This chapter reviews the evidence for sentience and cognitive abilities in fishes to highlight the growing empirical evidence of the mental capacities of fish. The definition of sentience is presented along with the scientific data pertinent to understanding what fishes are capable of, as well as higher order cognitive abilities such as numerical skills and the capacity for learning and memory. Being able to experience positive and negative welfare states such as pain, fear, and stress is highly debated for fishes; thus this chapter reviews the evidence for and arguments against conscious perception of pain and fear. If suffering and sentience are accepted in fishes, this has ethical implications for the way in which we use fish in scientific studies.


Animal sentience Cognition Intelligence Learning Memory Pain Welfare 


  1. 1.
    Kenny A. Descartes’ philosophical letters. Oxford: Clarendon Press; 1970.Google Scholar
  2. 2.
    Harnad S. Other bodies, other minds: a machine incarnation of an old philosophical problem. Minds Mach. 1991;1(1):43–54.Google Scholar
  3. 3.
    Sneddon LU, Elwood RW, Adamo S, Leach MC. Defining and assessing pain in animals. Anim Behav. 2014;97:201–12.CrossRefGoogle Scholar
  4. 4.
    Stamp Dawkins M. Why animals matter: animal consciousness, animal welfare, and human well-being. Oxford: Oxford University Press; 2012.Google Scholar
  5. 5.
    Griffin D. The question of animal awareness. New York: Rockefeller; 1976.Google Scholar
  6. 6.
    Duncan IJH. The changing concept of animal sentience. Appl Anim Behav Sci. 2006;100(1–2):11–9.CrossRefGoogle Scholar
  7. 7.
    Proctor H. Animal sentience: where are we and where are we heading? Animals. 2012;2(4):628–39.PubMedCrossRefGoogle Scholar
  8. 8.
    Broom DM. Sentience and animal welfare. Wallingford: CABI; 2014.CrossRefGoogle Scholar
  9. 9.
    Sneddon LU, Lopez-Luna J, Wolfenden DCC, Leach MC, Valentim AM, Steenbergen PJ, et al. Fish sentience denial: muddying the waters. Anim Sentience. 2018;3(21):1–11.Google Scholar
  10. 10.
    Sneddon LU. Pain in aquatic animals. J Exp Biol. 2015;218(7):967–76.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
  12. 12.
    Brandl SJ, Bellwood DR. Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes. Sci Rep. 2015;5:14556.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Griffiths SW, Magurran AE. Familiarity in schooling fish: how long does it take to acquire? Anim Behav. 1997;53(5):945–9.CrossRefGoogle Scholar
  14. 14.
    Brown C. Do female rainbowfish (Melanotaenia spp.) prefer to shoal with familiar individuals under predation pressure? J Ethol. 2002;20(2):89–94.CrossRefGoogle Scholar
  15. 15.
    Bergmüller R, Taborsky M. Experimental manipulation of helping in a cooperative breeder: helpers ‘pay to stay’ by pre-emptive appeasement. Anim Behav. 2005;69:19–28.CrossRefGoogle Scholar
  16. 16.
    Bergmüller R, Heg D, Taborsky M. Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. Proc R Soc Lond B. 2005;272:325–31.CrossRefGoogle Scholar
  17. 17.
    Bshary R, Schäffer D. Choosy reef fish select cleaner fish that provide high-quality service. Anim Behav. 2002;63:557–64.CrossRefGoogle Scholar
  18. 18.
    Bshary R, Grutter AS. Image scoring and cooperation. Nature. 2006;441:975–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Dugatkin LA, Alfieri M. Tit-for-tat in guppies (Poecilia reticulata): the relative nature of cooperation and defection during predator inspection. Evol Ecol. 1991;5(3):300–9.CrossRefGoogle Scholar
  20. 20.
    Bshary R, Hohner A, Ait-el-Djoudi K, Fricke H. Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol. 2006;4(12):e431.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Brown C. Fish intelligence, sentience and ethics. Anim Cogn. 2015;18:1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Brown C, Laland KN. Social learning in Fishes. In: Brown C, Laland KN, Krause J, editors. Fish cognition and behavior. 2nd ed. Cambridge: Wiley-Blackwell; 2011. p. 186–202.CrossRefGoogle Scholar
  23. 23.
    Brown C, Laland KN, Krause J. Fish cognition and behavior. In: Brown C, Laland KN, Krause J, editors. Fish cognition and behavior. 2nd ed. Cambridge: Wiley-Blackwell Publishing; 2011. p. 1–9.CrossRefGoogle Scholar
  24. 24.
    Bshary R, Wickler W, Fricke H. Fish cognition: a primate’s eye view. Anim Cogn. 2002;5(1):1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Brown C, Warburton K. Social mechanisms enhance escape responses in shoals of rainbowfish, Melanotaenia duboulayi. Environ Biol Fish. 1999;56(4):455–9.CrossRefGoogle Scholar
  26. 26.
    Brown C, Laland KN. Social learning of a novel avoidance task in the guppy: conformity and social release. Anim Behav. 2002;64:41–7.CrossRefGoogle Scholar
  27. 27.
    Brown C, Laland KN. Social enhancement and social inhibition of foraging behavior in hatchery-reared Atlantic salmon. J Fish Biol. 2002;61(4):987–98.CrossRefGoogle Scholar
  28. 28.
    Trompf L, Brown C. Personality affects learning and trade-offs between private and social information in guppies, Poecilia reticulata. Anim Behav. 2014;88:99–106.CrossRefGoogle Scholar
  29. 29.
    Laland KN. Animal cultures. Curr Biol. 2008;18(9):R366–70.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Laland KN, Williams K. Social transmission of maladaptive information in the guppy. Behav Ecol. 1998;9(5):493–9.CrossRefGoogle Scholar
  31. 31.
    Laland KN, Williams K. Shoaling generates social learning of foraging information in guppies. Anim Behav. 1997;53(6):1161–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Helfman GS, Schultz ET. Social transmission of behavioral traditions in a coral reef fish. Anim Behav. 1984;32:379–84.CrossRefGoogle Scholar
  33. 33.
    White GE, Brown C. Site fidelity and homing behavior in intertidal fishes. Mar Biol. 2013;160(6):1365–72.CrossRefGoogle Scholar
  34. 34.
    Aronson LR. Orientation and jumping behavior in the gobiid fish Bathygobius soporator. Am Mus Novit. 1951;1486:1–12.Google Scholar
  35. 35.
    White GE, Brown C. A comparison of spatial learning and memory capabilities in intertidal gobies. Behav Ecol Sociobiol. 2014;68(9):1393–401.CrossRefGoogle Scholar
  36. 36.
    White GE, Brown C. Microhabitat use affects brain size and structure in intertidal gobies. Brain Behav Evol. 2015;85(2):107–16.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    White GE, Brown C. Cue choice and spatial learning ability are affected by habitat complexity in intertidal gobies. Behav Ecol. 2015;26(1):178–84.CrossRefGoogle Scholar
  38. 38.
    White GE, Brown C. Variation in brain morphology of intertidal gobies: a comparison of methodologies used to quantitatively assess brain volumes in fish. Brain Behav Evol. 2015;85(4):245–56.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pravosudov VV, Clayton NS. A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behav Neurosci. 2002;116(4):515–22.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Gaulin SJC, Fitzgerald RW. Sexual selection for spatial-learning ability. Anim Behav. 1989;37:322–31.CrossRefGoogle Scholar
  41. 41.
    Carbia PS, Brown C. Environmental enrichment influences spatial learning ability in captive-reared intertidal goby (Bathygobius cocosensis). Anim Cogn. 2019;22(1):89–98.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Carbia P, Brown C. Sexually dimorphic spatial learning is seasonally driven in the intertidal Cocos Frillgoby (Bathygobius cocosensis); 2019, Anim Cogn, In Press.Google Scholar
  43. 43.
    Pyter LM, Reader BF, Nelson RJ. Short photoperiods impair spatial learning and alter hippocampal dendritic morphology in adult male white-footed mice (Peromyscus leucopus). J Neurosci. 2005;25(18):4521–6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Agrillo C, Piffer L, Bisazza A, Butterworth B. Evidence for two numerical systems that are similar in humans and guppies. PLoS One. 2012;7(2):e31923.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ward C, Smuts BB. Quantity-based judgments in the domestic dog (Canis lupus familiaris). Anim Cogn. 2007;10(1):71–80.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hunt S, Low J, Burns KC. Adaptive numerical competency in a food-hoarding songbird. Proc R Soc Lond B Biol Sci. 2008;267:2373–9.CrossRefGoogle Scholar
  47. 47.
    Bisazza A, Agrillo C, Lucon-Xiccato T. Extensive training extends numerical abilities of guppies. Anim Cogn. 2014;17(6):1413–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    DeLong CM, Barbato S, O’Leary T, Wilcox KT. Small and large number discrimination in goldfish (Carassius auratus) with extensive training. Behav Process. 2017;141:172–83.CrossRefGoogle Scholar
  49. 49.
    Arsalidou M, Taylor MJ. Is 2+2=4? meta-analyses of brain areas needed for numbers and calculations. NeuroImage. 2011;54(3):2382–93.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Chassy P, Grodd W. Comparison of quantities: core and format-dependent regions as revealed by fMRI. Cereb Cortex. 2012;22(6):1420–30.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bisazza A, Brown C. Lateralization of cognitive function in fishes. In: Brown C, Laland K, Krause J, editors. Fish cognition and behavior. 2nd ed. Cambridge: Wiley-Blackwell; 2011. p. 298–324.CrossRefGoogle Scholar
  52. 52.
    Magat M, Brown C. Laterality enhances cognition in Australian parrots. Proc R Soc Lond B Biol Sci. 2009;276(1676):4155–62.CrossRefGoogle Scholar
  53. 53.
    Bibost AL, Brown C. Laterality influences cognitive performance in rainbowfish Melanotaenia duboulayi. Anim Cogn. 2014;17(5):1045–51.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Dadda M, Agrillo C, Bisazza A, Brown C. Laterality enhances numerical skills in the guppy, Poecilia reticulata. Front Behav Neurosci. 2015;9:285.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lima SL, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool. 1990;68(4):619–40.CrossRefGoogle Scholar
  56. 56.
    Brown GE, Rive AC, Ferrari MCO, Chivers DP. The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav Ecol Sociobiol. 2006;61(1):9–16.CrossRefGoogle Scholar
  57. 57.
    Hellström G, Heynen M, Oosten J, Borcherding J, Magnhagen C. The effect of group size on risk taking and social conformity in Eurasian perch. Ecol Freshw Fish. 2011;20(4):499–502.CrossRefGoogle Scholar
  58. 58.
    Werner EE, Gilliam JF, Hall DJ, Mittelbach GG. An experimental test of the effects of predation risk on habitat use in fish. Ecology. 1983;64(6):1540–8.CrossRefGoogle Scholar
  59. 59.
    Killen SS, Marras S, McKenzie DJ. Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. J Anim Ecol. 2011;80(5):1024–33.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Dunlop R, Millsopp S, Laming P. Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. Appl Anim Behav Sci. 2006;97(2):255–71.CrossRefGoogle Scholar
  61. 61.
    Millsopp S, Laming P. Trade-offs between feeding and shock avoidance in goldfish (Carassius auratus). Appl Anim Behav Sci. 2008;113(1):247–54.CrossRefGoogle Scholar
  62. 62.
    Bentham J. An introduction to the principles of morals and legislation. Oxford: Clarendon Press; 1823.Google Scholar
  63. 63.
    Rose JD. The neurobehavioral nature of fishes and the question of awareness and pain. Rev Fish Sci. 2002;10:1–38.CrossRefGoogle Scholar
  64. 64.
    Sneddon LU. Anatomical and electrophysiological analysis of the trigeminal nerve in a teleost fish, Oncorhynchus mykiss. Neurosci Lett. 2002;319(3):167–71.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Sneddon LU. Comparative physiology of nociception and pain. Physiology. 2018;33:63–73.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Key B. Why fish do not feel pain. Anim Sentience. 2016;1(3):1.Google Scholar
  67. 67.
    Sneddon LU, Leach MC. Anthropomorphic denial of fish pain. Anim Sentience. 2016;1(3):28.Google Scholar
  68. 68.
    Damasio A, Damasio H. Pain and other feelings in humans and animals. Anim Sentience. 2016;1(3):33.Google Scholar
  69. 69.
    Merker BH. The line drawn on pain still holds. Anim Sentience. 2016;1(3):46.Google Scholar
  70. 70.
    Curtright A, Rosser M, Goh S, Keown B, Wagner E, Sharifi J, et al. Modeling nociception in zebrafish: a way forward for unbiased analgesic discovery. PLoS One. 2015;10:e0116766.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Magalhaes FEA, de Sousa CAP, Santos SAA, Menezes RB, Batista FLA, Abreu ÂO, et al. Adult zebrafish (Danio rerio): an alternative behavioral model of Formalin-induced nociception. Zebrafish. 2017;14(5):422–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Schroeder P, Sneddon LU. Exploring the efficacy of immersion analgesics in zebrafish using an integrative approach. Appl Anim Behav Sci. 2017;187:93–102.CrossRefGoogle Scholar
  73. 73.
    Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Activity reduced by noxious chemical stimulation is ameliorated by immersion in analgesic drugs in zebrafish. J Exp Biol. 2017a;220:1451–8.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Impact of analgesic drugs on the behavioral responses of larval zebrafish to potentially noxious temperatures. Appl Anim Behav Sci. 2017b;188:97–105.CrossRefGoogle Scholar
  75. 75.
    Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Impact of stress, fear and anxiety on the nociceptive responses of larval zebrafish. PLoS One. 2017c;12(8):e0181010.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lopez-Luna J, Canty MN, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Behavioral responses of fish larvae modulated by analgesic drugs after a stress exposure. Appl Anim Behav Sci. 2017d;195:115–20.CrossRefGoogle Scholar
  77. 77.
    Taylor JC, Dewberry LS, Totsch SK, Yessick LR, DeBerry JJ, Watts SA, Sorge RE. A novel zebrafish-based model of nociception. Physiol Behav. 2017;174:83–8.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Fendt M, Fanselow MS. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev. 1999;23:743–60.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Gorissen M, Manuel R, Pelgrim TNM, Mes W, de Wolf MJS, Zethof J, et al. Differences in inhibitory avoidance, cortisol and brain gene expression in TL and AB zebrafish. Genes Brain Behav. 2015;14:428–38.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Nathan FM, Ogawa S, Pahar IS. Kisspeptin1 modulate odorant evoked fear response in two serotonin receptor subtypes (5-HT1A and 5-HT2) in zebrafish. J Neurochem. 2015;133(6):870–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Perathoner S, Cordero-Maldonado ML, Crawford AD. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. J Neurosci Res. 2016;94(6):445–62.PubMedCrossRefGoogle Scholar
  82. 82.
    Portavella M, Vargas JP, Torres B, Salas C. The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull. 2002;57(3–4):397–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Maximino C, Marques de Brito T, Dias CA, Gouveia A Jr, Morato S. Scototaxis as anxiety-like behavior in fish. Nat Protoc. 2010;5(2):209–16.PubMedCrossRefGoogle Scholar
  84. 84.
    Rehnberg BG, Bates EH, Smith RJF, Sloley BD, Richardson JS. Brain benzodiazepine receptors in fathead minnows and the behavioral-response to alarm pheromone. Pharmacol Biochem Behav. 1989;33(2):435–42.PubMedCrossRefGoogle Scholar
  85. 85.
    Crawley JN. Exploratory behavior models of anxiety in mice. Neurosci Biobehav Rev. 1985;9:37–44.PubMedCrossRefGoogle Scholar
  86. 86.
    Grossman L, Stewart A, Gaikwad S, Utterback E, Wu N, DiLeo J, et al. Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull. 2011;85:58–63.PubMedCrossRefGoogle Scholar
  87. 87.
    Hedayatirad M, Nematollahi MA, Forsatkar MN, Brown C. Prozac impacts lateralization of aggression in male Siamese fighting fish. Ecotoxicol Environ Saf. 2017;140:84–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Soares MC, Oliveira RF, Ros AFH, Grutter AS, Bshary R. Tactile stimulation lowers stress in fish. Nat Commun. 2011;2:534.PubMedCrossRefGoogle Scholar
  89. 89.
    Faustino AI, Tacão-Monteiro A, Oliveira RF. Mechanisms of social buffering of fear in zebrafish. Sci Rep. 2017;7:44329.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    White LJ, Thomson JS, Pounder KC, Coleman RC, Sneddon LU. The impact of social context on behavior and the recovery from welfare challenges in zebrafish, Danio rerio. Anim Behav. 2017;132:189–99.CrossRefGoogle Scholar
  91. 91.
    Ward AJW, Hart PJB. The effects of kin and familiarity on interactions between fish. Fish Fish. 2003;4(4):348–58.CrossRefGoogle Scholar
  92. 92.
    Gerlach G, Lysiak N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim Behav. 2006;71(6):1371–7.CrossRefGoogle Scholar
  93. 93.
    Gerlach G, Hodgins-Davis A, Avolio C, Schunter C. Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc R Soc Biol Sci. 2008;275(1647):2165–70.CrossRefGoogle Scholar
  94. 94.
    Brown GE, Smith RJ. Fathead minnows use chemical cues to discriminate natural shoalmates from unfamiliar conspecifics. J Chem Ecol. 1994;20(12):3051–61.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Magurran AE, Seghers BH, Shaw PW, Carvalho GR. Schooling preferences for familiar fish in the guppy, Poecilia reticulata. J Fish Biol. 1994;45(3):401–6.CrossRefGoogle Scholar
  96. 96.
    Waas JR, Colgan PW. Male sticklebacks can distinguish between familiar rivals on the basis of visual cues alone. Anim Behav. 1994;47(1):7–13.CrossRefGoogle Scholar
  97. 97.
    Satoh S, Tanaka H, Kohda M. Facial recognition in a discus fish (Cichlidae): experimental approach using digital models. PLoS One. 2016;11(5):e0154543.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Newport C, Wallis G, Reshitnyk Y, Siebeck UE. Discrimination of human faces by archerfish (Toxotes chatareus). Sci Rep. 2016;6:27523.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Arnold KE. Kin recognition in rainbowfish (Melanotaenia eachamensis): sex, sibs and shoaling. Behav Ecol Sociobiol. 2000;48(5):385–91.CrossRefGoogle Scholar
  100. 100.
    Olsen KH, Grahn M, Lohm J, Langefors A. MHC and kin recognition in juvenile Artic charr, Salvelinus alpinus (L.). Anim Behav. 1998;56(2):319–27.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Peuhkuri N, Seppa P. Do three-spined sticklebacks group with kin? Ann Zool Fenn. 1998;35:21–7.Google Scholar
  102. 102.
    Olsen KH, Jarvi T. Effects of kinship on aggression and RNA content in juvenile Arctic charr. J Fish Biol. 1997;51(2):422–35.Google Scholar
  103. 103.
    Frommen JG, Luz C, Bakker TCM. Kin discrimination in sticklebacks is mediated by social learning rather than innate recognition. Ethology. 2007;113(3):276–82.CrossRefGoogle Scholar
  104. 104.
    Russell ST, Kelley JL, Graves JA, Magurran AE. Kin structure and shoal composition dynamics in the guppy, Poecilia reticulata. Oikos. 2004;106(3):520–6.CrossRefGoogle Scholar
  105. 105.
    Oulton LJ, Haviland V, Brown C. Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos. PLoS One. 2013;8(10):e76061.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Atherton JA, McCormik MI. Kin recognition in embryonic damselfishes. Oikos. 2017;126(7):1062–169.CrossRefGoogle Scholar
  107. 107.
    Gallup GG. Chimpanzees: self-recognition. Science. 1970;167:86–7.CrossRefGoogle Scholar
  108. 108.
    Plotnik JM, de Waal FBM, Reiss D. Self-recognition in an Asian elephant. Proc Natl Acad Sci U S A. 2006;103(45):17053–7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Prior H, Schwarz A, Güntürkün O. Mirror-induced behavior in the magpie (Pica pica): evidence of self-recognition. PLoS Biol. 2008;6(8):e202.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Verbeek P, Iwamoto T, Murakami N. Differences in aggression between wild-type and domesticated fighting fish are context dependent. Anim Behav. 2007;73(1):75–83.CrossRefGoogle Scholar
  111. 111.
    Desjardins JK, Fernald RD. What do fish make of mirror images? Biol Lett. 2010;6(6):744–7.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Suddendorf T, Butler DL. The nature of visual self-recognition. Trends Cogn Sci. 2013;17:121–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Balzarini V, Taborsky M, Wanner S, Koch F, Frommen J. Mirror, mirror on the wall: the predictive value of mirror tests for measuring aggression in fish. Behav Ecol Sociobiol. 2014;68:871–8.CrossRefGoogle Scholar
  114. 114.
    Forsatkar MN, Mematollahi MA, Brown C. Male Siamese fighting fish use fill flaring as the first display towards territorial intruders. J Ethol. 2017;35:51–9.CrossRefGoogle Scholar
  115. 115.
    Hotta T, Komiyama S, Kohda M. A social cichlid fish failed to pass the mark test. Anim Cogn. 2018;21(1):127–36.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Kohda M, Takashi H, Takeyama T, Awata S, Tanaka H, Asai J, et al. Cleaner wrasse pass the mark test: what are the implications for consciousness and self-awareness testing in animals? BioRxivorg. 2018;
  117. 117.
    Ari C, D’Agostino DP. Contingency checking and self-directed behaviors in giant manta rays: do elasmobranchs have self-awareness? J Ethol. 2016;34:167–74. Scholar
  118. 118.
    Reusch TB, Häberli MA, Aeschlimann PB, Milinski M. Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature. 2001;414(6861):300.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Milinski M, Griffiths S, Wegner KM, Reusch TB, Haas-Assenbaum A, Boehm T. Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc Natl Acad Sci U S A. 2005;102(12):4414–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Aeschlimann PB, Häberli MA, Reusch TBH, Boehm T, Milinski M. Female sticklebacks (Gasterosteus aculeatus) use self-reference to optimize MHC allele number during mate selection. Behav Ecol Sociobiol. 2003;54(2):119–26.CrossRefGoogle Scholar
  121. 121.
    Fitzgerald GJ, Morrissette J. Kin recognition and choice of shoal mates by threespine sticklebacks. Ethol Ecol Evol. 1992;4(3):273–83.CrossRefGoogle Scholar
  122. 122.
    Mehlis M, Bakker T, Frommen J. Smells like sib spirit: kin recognition in three-spined sticklebacks (Gasterosteus aculeatus) is mediated by olfactory cues. Anim Cogn. 2008;11(4):643–50.PubMedCrossRefGoogle Scholar
  123. 123.
    Thünken T, Waltschyk N, Bakker T, Kullmann H. Olfactory self-recognition in a cichlid fish. Anim Cogn. 2009;12(5):717–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of LiverpoolLiverpoolUK
  2. 2.Macquarie UniversitySydneyAustralia

Personalised recommendations