Skip to main content

Unifying Next-Generation Biomarkers and Nanodiagnostic Platforms for Precision Prostate Cancer Management

  • Chapter
  • First Online:
  • 208 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we review the next generation of PCa biomarkers and the latest complementary nano-strategies, as well as discuss fundamental clinical translation challenges yet to be overcome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  2. Robinson D et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161:1215–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robinson DR et al (2017) Integrative clinical genomics of metastatic cancer. Nature 548:297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gundem G et al (2015) The evolutionary history of lethal metastatic prostate cancer. Nature 520:353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beltran H et al (2016) Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22:298–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fraser M et al (2017) Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541:359–364

    Article  CAS  PubMed  Google Scholar 

  7. Hong MKH et al (2015) Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat Commun 6:6605

    Article  CAS  PubMed  Google Scholar 

  8. Kumar A et al (2016) Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med 22:369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith BA et al (2015) A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc Natl Acad Sci USA 112:E6544–E6552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carreira S et al (2014) Tumor clone dynamics in lethal prostate cancer. Sci Transl Med 6:254ra125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Barbieri CE et al (2013) The mutational landscape of prostate cancer. Eur Urol 64:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor RA et al (2017) Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun 8:13671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spratt DE, Zumsteg ZS, Feng FY, Tomlins SA (2016) Translational and clinical implications of the genetic landscape of prostate cancer. Nat Rev Clin Oncol 13:597–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schumacher FR et al (2018) Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 50:928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quigley DA et al (2018) Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. https://doi.org/10.1016/j.cell.2018.06.039

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mijuskovic M et al (2018) Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease. Br J Cancer 119:96–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wedge DC et al (2018) Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet 50:682–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Attard G, Beltran H (2015) Prioritizing precision medicine for prostate cancer. Ann Oncol 26:1041–1042

    Article  CAS  PubMed  Google Scholar 

  19. Irshad S et al (2013) A molecular signature predictive of indolent prostate cancer. Sci Transl Med 5:202ra122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Polascik TJ, Oesterling JE, Partin AW (1999) Prostate specific antigen: a decade of discovery—what we have learned and where we are going. J Urol 162:293–306

    Article  CAS  PubMed  Google Scholar 

  21. Schroeder FH et al (2009) Screening and prostate-cancer mortality in a randomized european study. N Engl J Med 360:1320–1328

    Article  CAS  Google Scholar 

  22. Andriole GL et al (2009) Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360:1310–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andriole GL et al (2012) Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian cancer screening trial: mortality results after 13 years of follow-up. J Natl Cancer Inst 104:125–132

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pinsky PF et al (2017) Extended mortality results for prostate cancer screening in the PLCO trial with median follow-up of 15 years. Cancer 123:592–599

    Article  PubMed  Google Scholar 

  25. Tsodikov A, Gulati R, Heijnsdijk EM et al (2017) Reconciling the effects of screening on prostate cancer mortality in the ERSPC and PLCO trials. Ann Intern Med

    Google Scholar 

  26. Shoag JE, Mittal S, Hu JC (2016) Reevaluating PSA testing rates in the PLCO trial. N Engl J Med 374:1795–1796

    Article  PubMed  Google Scholar 

  27. Pinsky PF et al (2010) Assessing contamination and compliance in the prostate component of the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial. Clin Trials 7:303–311

    Article  PubMed  Google Scholar 

  28. Pinsky PF, Prorok PC, Kramer BS (2017) Prostate cancer screening—a perspective on the current state of the evidence. N Engl J Med 376:1285–1289

    Article  PubMed  Google Scholar 

  29. Moyer VA, U.S. Preventive Services Task Force (2012) Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med 157:120–134

    Article  PubMed  Google Scholar 

  30. Jemal A et al (2015) Prostate cancer incidence and PSA testing patterns in relation to USPSTF screening recommendations. JAMA 314:2054–2061

    Article  CAS  PubMed  Google Scholar 

  31. Sammon JD et al (2015) Prostate-specific antigen screening After 2012 US Preventive Services Task Force recommendations. JAMA 314:2075–2077

    Article  Google Scholar 

  32. Carter HB et al (2013) Early detection of prostate cancer: AUA guideline. J Urol 190:419–426

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gandaglia G et al (2016) The problem is not what to do with indolent and harmless prostate cancer—the problem is how to avoid finding these cancers. Eur Urol 70:547–548

    Article  PubMed  Google Scholar 

  34. Carlsson SV, Kattan MW (2016) Prostate cancer: personalized risk—stratified screening or abandoning it altogether? Nat Rev Clin Oncol 13:140–142

    Article  CAS  PubMed  Google Scholar 

  35. Grasso CS et al (2015) Integrative molecular profiling of routine clinical prostate cancer specimens. Ann Oncol 26:1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abeshouse A et al (2015) The molecular taxonomy of primary prostate cancer. Cell 163:1011–1025

    Article  CAS  Google Scholar 

  37. Tomlins SA et al (2015) Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes. Eur Urol 68:555–567

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kaffenberger SD, Barbieri CE (2016) Molecular subtyping of prostate cancer. Curr Opin Urol 26:213–218

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paulo P et al (2012) Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements. Neoplasia 14:600–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith SC, Tomlins SA (2014) Prostate cancer SubtyPINg BiomarKers and outcome: is clarity EmERGing? Clin Cancer Res 20:4733–4736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Na R et al (2017) Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol 71:740–747

    Article  CAS  PubMed  Google Scholar 

  42. Grönberg H et al (2015) Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol 16:1667–1676

    Article  PubMed  Google Scholar 

  43. Ström P et al (2018) The Stockholm-3 model for prostate cancer detection: algorithm update, biomarker contribution, and reflex test potential. Eur Urol 74:204–210

    Article  PubMed  Google Scholar 

  44. Barbieri CE, Chinnaiyan AM, Lerner SP, Swanton C, Rubin MA (2017) The emergence of precision urologic oncology: a collaborative review on biomarker-driven therapeutics. Eur Urol 71:237–246

    Article  PubMed  Google Scholar 

  45. Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM (2012) Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med 4:127rv3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dijkstra S, Mulders PFA, Schalken JA (2014) Clinical use of novel urine and blood based prostate cancer biomarkers: a review. Clin Biochem 47:889–896

    Article  CAS  PubMed  Google Scholar 

  47. Wu D et al (2017) Urinary biomarkers in prostate cancer detection and monitoring progression. Crit Rev Oncol/Hematol 118:15–26

    Article  Google Scholar 

  48. Velonas VM, Woo HH, dos Remedios CG, Assinder SJ (2013) Current status of biomarkers for prostate cancer. Int J Mol Sci 14:11034–11060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jedinak A et al (2015) Novel non-invasive biomarkers that distinguish between benign prostate hyperplasia and prostate cancer. BMC Cancer 15:259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cuzick J et al (2014) Prevention and early detection of prostate cancer. Lancet Oncol 15:E484–E492

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hessels D, Schalken JA (2013) Urinary biomarkers for prostate cancer: a review. Asian J Androl 15:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Narayan VM, Konety BR, Warlick C (2017) Novel biomarkers for prostate cancer: an evidence-based review for use in clinical practice. Int J Urol 24:352–360

    Article  PubMed  Google Scholar 

  53. Ploussard G, de la Taille A (2010) Urine biomarkers in prostate cancer. Nat Rev Urol 7:101–109

    Article  CAS  PubMed  Google Scholar 

  54. Prensner JR, Chinnaiyan AM (2009) Oncogenic gene fusions in epithelial carcinomas. Curr Opin Genet Dev 19:82–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM (2015) Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med 7:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8:497–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Edwards PAW (2010) Fusion genes and chromosome translocations in the common epithelial cancers. J Pathol 220:244–254

    CAS  PubMed  Google Scholar 

  58. Tomlins SA et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  CAS  PubMed  Google Scholar 

  59. Paoloni-Giacobino A, Chen HM, Peitsch MC, Rossier C, Antonarakis SE (1997) Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 44:309–320

    Article  CAS  PubMed  Google Scholar 

  60. Wilson S et al (2005) The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 388:967–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carver BS et al (2009) ETS rearrangements and prostate cancer initiation. Nature 457:E1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Linn DE, Penney KL, Bronson RT, Mucci LA, Li Z (2016) Deletion of interstitial genes between TMPRSS2 and ERG promotes prostate cancer progression. Can Res 76:1869–1881

    Article  CAS  Google Scholar 

  63. Clark J et al (2007) Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene 26:2667–2673

    Article  CAS  PubMed  Google Scholar 

  64. Clark JP, Cooper CS (2009) ETS gene fusions in prostate cancer. Nat Rev Urol 6:429–439

    Article  CAS  PubMed  Google Scholar 

  65. Barbieri CE, Rubin MA (2015) Genomic rearrangements in prostate cancer. Curr Opin Urol 25:71–76

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mani RS et al (2016) Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep 17:2620–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Adamo P, Ladomery MR (2016) The oncogene ERG: a key factor in prostate cancer. Oncogene 35:403–414

    Article  CAS  PubMed  Google Scholar 

  68. Kron KJ et al (2017) TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat Genet 49:1336–1345

    Article  CAS  PubMed  Google Scholar 

  69. Bose R et al (2017) ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 546:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim J, Wu L, Zhao JC, Jin HJ, Yu J (2014) TMPRSS2-ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c. Oncogene 33:5183–5192

    Article  CAS  PubMed  Google Scholar 

  71. Wu LT et al (2013) ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Can Res 73:6068–6079

    Article  CAS  Google Scholar 

  72. Kedage V et al (2016) An interaction with Ewing’s Sarcoma breakpoint protein EWS defines a specific oncogenic mechanism of ETS factors rearranged in prostate cancer. Cell Rep 17:1289–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lucas JM et al (2014) The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov 4:1310–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tian TV et al (2014) Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene 33:2204–2214

    Article  CAS  PubMed  Google Scholar 

  75. Ren SC et al (2018) Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol 73:322–339

    Article  CAS  PubMed  Google Scholar 

  76. St. John J, Powell K, Conley-LaComb MK, Chinni SR (2012) TMPRSS2-ERG fusion gene expression in prostate tumor cells and its clinical and biological significance in prostate cancer progression. J Cancer Sci Ther 4:94–101

    Google Scholar 

  77. Hu Y et al (2008) Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin Cancer Res 14:4719–4725

    Article  CAS  PubMed  Google Scholar 

  78. Attard G et al (2009) Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Can Res 69:2912–2918

    Article  CAS  Google Scholar 

  79. Wang XJ et al (2017) Development of peptidomimetic inhibitors of the ERG gene fusion product in prostate cancer. Cancer Cell 31:532–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chatterjee P et al (2015) The TMPRSS2-ERG gene fusion blocks XRCC4-mediated nonhomologous end-joining repair and radiosensitizes prostate cancer cells to PARP inhibition. Mol Cancer Ther 14:1896–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Furusato B et al (2010) ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis 13:228–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. White NM, Feng FY, Maher CA (2013) Recurrent rearrangements in prostate cancer: causes and therapeutic potential. Curr Drug Targets 14:450–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hessels D, Schalken JA (2013) Recurrent gene fusions in prostate cancer: their clinical implications and uses. Curr Urol Rep 14:214–222

    Article  PubMed  Google Scholar 

  84. Kissick HT, Sanda MG, Dunn LK, Arredouani MS (2013) Development of a peptide-based vaccine targeting TMPRSS2:ERG fusion-positive prostate cancer. Cancer Immunol Immunother 62:1831–1840

    Article  CAS  PubMed  Google Scholar 

  85. Sanguedolce F et al (2016) Urine TMPRSS2:ERG fusion transcript as a biomarker for prostate cancer: literature review. Clin Genitourin Cancer 14:117–121

    Article  PubMed  Google Scholar 

  86. Wang JH, Cai Y, Ren CX, Ittmann M (2006) Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Can Res 66:8347–8351

    Article  CAS  Google Scholar 

  87. Wang JH et al (2008) Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG Fusion gene transcripts. Can Res 68:8516–8524

    Article  CAS  Google Scholar 

  88. Park K et al (2014) TMPRSS2:ERG gene fusion predicts subsequent detection of prostate cancer in patients with high-grade prostatic intraepithelial Neoplasia. J Clin Oncol 32:206–211

    Article  PubMed  Google Scholar 

  89. Culig Z (2014) TMPRSS:ERG fusion in prostate cancer: from experimental approaches to prognostic studies. Eur Urol 66:861–862

    Article  PubMed  Google Scholar 

  90. Young A et al (2012) Correlation of urine TMPRSS2:ERG and PCA3 to ERG plus and total prostate cancer burden. Am J Clin Pathol 138:685–696

    Article  PubMed  Google Scholar 

  91. Day JR, Jost M, Reynolds MA, Groskopf J, Rittenhouse H (2011) PCA3: from basic molecular science to the clinical lab. Cancer Lett 301:1–6

    Article  CAS  PubMed  Google Scholar 

  92. Ferreira LB et al (2012) PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer 12:507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bussemakers MJG et al (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Can Res 59:5975–5979

    CAS  Google Scholar 

  94. Cui Y et al (2016) Evaluation of prostate cancer antigen 3 for detecting prostate cancer: a systematic review and meta-analysis. Sci Rep 6:25776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee GL, Dobi A, Srivastava S (2011) Diagnostic performance of the PCA3 urine test. Nat Rev Urol 8:123–124

    Article  PubMed  Google Scholar 

  96. Deras IL et al (2008) PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol 179:1587–1592

    Article  PubMed  Google Scholar 

  97. Laxman B et al (2008) A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Can Res 68:645–649

    Article  CAS  Google Scholar 

  98. Prensner JR et al (2013) The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 45:1392–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mehra R et al (2016) Overexpression of the long non-coding RNA SChLAP1 independently predicts lethal prostate cancer. Eur Urol 70:549–552

    Article  CAS  PubMed  Google Scholar 

  100. Prensner JR et al (2014) RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol 15:1469–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chua MLK et al (2017) A prostate cancer “nimbosus’’: genomic instability and SChLAP1 dysregulation underpin aggression of intraductal and cribriform subpathologies. Eur Urol 72:665–674

    Article  CAS  PubMed  Google Scholar 

  102. Yin CQ et al (2018) Molecular profiling of pooled circulating tumor cells from prostate cancer patients using a dual-antibody-functionalized microfluidic device. Anal Chem 90:3744–3751

    Article  CAS  PubMed  Google Scholar 

  103. Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100:387–390

    Article  PubMed  Google Scholar 

  104. Yoshimoto M et al (2006) Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. Cancer Genet Cytogenet 169:128–137

    Article  CAS  PubMed  Google Scholar 

  105. Murphy SJ et al (2016) Integrated analysis of the genomic instability of PTEN in clinically insignificant and significant prostate cancer. Mod Pathol 29:143–156

    Article  CAS  PubMed  Google Scholar 

  106. Phin S, Moore MW, Cotter PD (2013) Genomic rearrangements of PTEN in prostate cancer. Front Oncol 3:240

    Article  PubMed  PubMed Central  Google Scholar 

  107. Punnoose EA et al (2015) PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br J Cancer 113:1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JFM (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8:187–198

    Article  CAS  PubMed  Google Scholar 

  109. Krohn A et al (2012) Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol 181:401–412

    Article  CAS  PubMed  Google Scholar 

  110. Yoshimoto M et al (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21:1451–1460

    Article  CAS  PubMed  Google Scholar 

  111. Han B et al (2009) Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol 22:1083–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ahearn TU et al (2016) A prospective investigation of PTEN loss and ERG expression in lethal prostate cancer. JNCI 108:djv346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. King JC et al (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41:524–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Carver BS et al (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41:619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Haile S, Sadar MD (2011) Androgen receptor and its splice variants in prostate cancer. Cell Mol Life Sci 68:3971–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hu R et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Can Res 69:16–22

    Article  CAS  Google Scholar 

  117. Hornberg E et al (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS ONE 6:e19059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ware KE, Garcia-Blanco MA, Armstrong AJ, Dehm SM (2014) Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer 21:T87–T103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dehm SM, Tindall DJ (2011) Alternatively spliced androgen receptor variants. Endocr Relat Cancer 18:R183–R196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sun SH et al (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Investig 120:2715–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Watson PA et al (2010) Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA 107:16759–16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu LL et al (2014) Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene 33:3140–3150

    Article  CAS  PubMed  Google Scholar 

  123. Guo ZY et al (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Can Res 69:2305–2313

    Article  CAS  Google Scholar 

  124. Antonarakis ES et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Scher HI, Graf RP, Schreiber NA et al (2018) Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.1621

    Article  PubMed  PubMed Central  Google Scholar 

  126. Azad AA et al (2015) Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 21:2315–2324

    Article  CAS  PubMed  Google Scholar 

  127. Salvi S et al (2015) Circulating cell-free AR and CYP17A1 copy number variations may associate with outcome of metastatic castration-resistant prostate cancer patients treated with abiraterone. Br J Cancer 112:1717–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Todenhofer T et al (2017) AR-V7 transcripts in whole blood RNA of patients with metastatic castration resistant prostate cancer correlate with response to abiraterone acetate. J Urol 197:135–142

    Article  CAS  PubMed  Google Scholar 

  129. Wyatt AW et al (2016) Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol 2:1598–1606

    Article  PubMed  PubMed Central  Google Scholar 

  130. Smith MR et al (2018) Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 378:1408–1418

    Article  CAS  PubMed  Google Scholar 

  131. Hussain M et al (2018) PROSPER: a phase 3, randomized, double-blind, placebo (PBO)-controlled study of enzalutamide (ENZA) in men with nonmetastatic castration-resistant prostate cancer (M0 CRPC). J Clin Oncol 36:3

    Article  Google Scholar 

  132. James ND et al (2017) Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 377:338–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fizazi K et al (2017) Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 377:352–360

    Article  CAS  PubMed  Google Scholar 

  134. Sartori DA, Chan DW (2014) Biomarkers in prostate cancer: what’s new? Curr Opin Oncol 26:259–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Feng F, Schaich M, Hughes L (2014) Current and future applications of genetic prostate cancer screening in the urologic clinic. Urol Nurs 34:281–289

    Article  PubMed  Google Scholar 

  136. Loeb S et al (2015) The Prostate Health Index selectively identifies clinically significant prostate cancer. J Urol 193:1163–1169

    Article  PubMed  Google Scholar 

  137. de la Calle C et al (2015) Multicenter evaluation of the Prostate Health Index to detect aggressive prostate cancer in biopsy naive men. J Urol 194:65–72

    Article  PubMed  PubMed Central  Google Scholar 

  138. Catalona WJ et al (2011) A multicenter study of -2 pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol 185:1650–1655

    Article  CAS  PubMed  Google Scholar 

  139. Parekh DJ et al (2015) A multi-institutional prospective trial in the USA confirms that the 4Kscore accurately identifies men with high-grade prostate cancer. Eur Urol 68:464–470

    Article  PubMed  Google Scholar 

  140. Braun K, Sjoberg DD, Vickers AJ, Lilja H, Bjartell AS (2016) A four-kallikrein panel predicts high-grade cancer on biopsy: independent validation in a community cohort. Eur Urol 69:505–511

    Article  PubMed  Google Scholar 

  141. Vickers A et al (2010) Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J Clin Oncol 28:2493–2498

    Article  PubMed  PubMed Central  Google Scholar 

  142. Vickers AJ et al (2008) A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European Randomized Study of Prostate Cancer Screening in Goteborg, Sweden. BMC Med 6:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Van Neste L et al (2012) The epigenetic promise for prostate cancer diagnosis. Prostate 72:1248–1261

    Article  PubMed  CAS  Google Scholar 

  144. Henrique R et al (2006) Epigenetic heterogeneity of high-grade prostatic intraepithelial neoplasia: clues for clonal progression in prostate carcinogenesis. Mol Cancer Res 4:1–8

    Article  CAS  PubMed  Google Scholar 

  145. Zhou M, Tokumaru Y, Sidransky D, Epstein JI (2004) Quantitative GSTP1 methylation levels correlate with Gleason grade and tumor volume in prostate needle biopsies. J Urol 171:2195–2198

    Article  CAS  PubMed  Google Scholar 

  146. Trujillo KA, Jones AC, Griffith JK, Bisoffi M (2012) Markers of field cancerization: proposed clinical applications in prostate biopsies. Prostate Cancer 2012:302894

    Article  PubMed  PubMed Central  Google Scholar 

  147. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium—clinical implications of multicentric origin. Cancer 6:963–968

    Article  CAS  PubMed  Google Scholar 

  148. Braakhuis BJM, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH (2003) A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Can Res 63:1727–1730

    CAS  Google Scholar 

  149. Mehrotra J et al (2008) Quantitative, spatial resolution of the epigenetic field effect in prostate cancer. Prostate 68:152–160

    Article  CAS  PubMed  Google Scholar 

  150. Partin AW et al (2014) Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol 192:1081–1087

    Article  PubMed  PubMed Central  Google Scholar 

  151. Van Neste L et al (2016) Risk score predicts high-grade prostate cancer in DNA-methylation positive, histopathologically negative biopsies. Prostate 76:1078–1087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Stewart GD et al (2013) Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol 189:1110–1116

    Article  PubMed  Google Scholar 

  153. Wojno KJ et al (2014) Reduced rate of repeated prostate biopsies observed in ConfirmMDx clinical utility field study. Am Health Drug Benefits 7:129–134

    PubMed  PubMed Central  Google Scholar 

  154. Cullen J et al (2015) A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol 68:123–131

    Article  PubMed  Google Scholar 

  155. Klein EA et al (2014) A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol 66:550–560

    Article  PubMed  Google Scholar 

  156. Dall’Era MA et al (2015) Utility of the Oncotype DX® prostate cancer assay in clinical practice for treatment selection in men newly diagnosed with prostate cancer: a retrospective chart review analysis. Urol Pract 2:343–348

    Google Scholar 

  157. Canfield SE et al (2014) A guide for clinicians in the evaluation of emerging molecular diagnostics for newly diagnosed prostate cancer. Rev Urol 16:172–180

    PubMed  PubMed Central  Google Scholar 

  158. Cuzick J et al (2012) Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer 106:1095–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Whitfield ML et al (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cuzick J et al (2011) Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol 12:245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Klein EA et al (2016) Decipher genomic classifier measured on prostate biopsy predicts metastasis risk. Urology 90:148–152

    Article  PubMed  Google Scholar 

  162. Badani KK et al (2015) Effect of a genomic classifier test on clinical practice decisions for patients with high-risk prostate cancer after surgery. BJU Int 115:419–429

    Article  PubMed  Google Scholar 

  163. Badani K et al (2013) Impact of a genomic classifier of metastatic risk on postoperative treatment recommendations for prostate cancer patients: a report from the DECIDE study group. Oncotarget 4:600–609

    Article  PubMed  PubMed Central  Google Scholar 

  164. Klein EA et al (2015) A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur Urol 67:778–786

    Article  PubMed  Google Scholar 

  165. Haese A et al (2008) Clinical utility of the PCA3 urine assay in european men scheduled for repeat biopsy. Eur Urol 54:1081–1088

    Article  PubMed  Google Scholar 

  166. Chun FK et al (2009) Prostate Cancer Gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur Urol 56:659–667

    Article  CAS  PubMed  Google Scholar 

  167. Hessels D, Schalken JA (2009) The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 6:255–261

    Article  CAS  PubMed  Google Scholar 

  168. Ploussard G et al (2011) Prostate cancer antigen 3 score accurately predicts tumour volume and might help in selecting prostate cancer patients for active surveillance. Eur Urol 59:422–429

    Article  PubMed  Google Scholar 

  169. Roobol MJ et al (2010) Performance of the prostate cancer antigen 3 (PCA3) gene and prostate-specific antigen in prescreened men: exploring the value of PCA3 for a first-line diagnostic test. Eur Urol 58:475–481

    Article  CAS  PubMed  Google Scholar 

  170. Groskopf J et al (2006) APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem 52:1089–1095

    Article  CAS  PubMed  Google Scholar 

  171. Wei JT et al (2014) Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J Clin Oncol 32:4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tomlins SA et al (2011) Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 3:94ra72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tomlins SA (2014) Urine PCA3 and TMPRSS2:ERG using cancer-specific markers to detect cancer. Eur Urol 65:543–545

    Article  CAS  PubMed  Google Scholar 

  174. Leyten G et al (2014) Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol 65:534–542

    Article  CAS  PubMed  Google Scholar 

  175. Tomlins SA et al (2015) Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur Urol 70:45–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Merdan S et al (2015) Assessment of long-term outcomes associated with urinary prostate cancer antigen 3 and TMPRSS2:ERG gene fusion at repeat biopsy. Cancer 121:4071–4079

    Article  CAS  PubMed  Google Scholar 

  177. Salami SS et al (2013) Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol: Semin Orig Investig 31:566–571

    Article  CAS  Google Scholar 

  178. Sanda MG et al (2017) Association between combined TMPRSS2:ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol 3:1085–1093

    Article  PubMed  PubMed Central  Google Scholar 

  179. Leyten G et al (2015) Identification of a candidate gene panel for the early diagnosis of prostate cancer. Clin Cancer Res 21:3061–3070

    Article  CAS  PubMed  Google Scholar 

  180. Van Neste L et al (2016) Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur Urol 70:740–748

    Article  PubMed  CAS  Google Scholar 

  181. Nilsson J et al (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100:1603–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Overbye A et al (2015) Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget 6:30357–30376

    Article  PubMed  PubMed Central  Google Scholar 

  183. Duijvesz D, Luider T, Bangma CH, Jenster G (2011) Exosomes as biomarker treasure chests for prostate cancer. Eur Urol 59:823–831

    Article  CAS  PubMed  Google Scholar 

  184. Mehralivand S et al (2018) A magnetic resonance imaging-based prediction model for prostate biopsy risk stratification. JAMA Oncol 4:678–685

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ahmed HU et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822

    Article  PubMed  Google Scholar 

  186. Futterer JJ et al (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68:1045–1053

    Article  PubMed  Google Scholar 

  187. Pokorny MR et al (2014) Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol 66:22–29

    Article  PubMed  Google Scholar 

  188. Moore CM et al (2013) Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol 63:125–140

    Article  PubMed  Google Scholar 

  189. Siddiqui MM et al (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kasivisvanathan V et al (2018) MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 378:1767–1777

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  PubMed  Google Scholar 

  192. Nie SM, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  CAS  PubMed  Google Scholar 

  193. Smith SJ, Nemr CR, Kelley SO (2017) Chemistry-driven approaches for ultrasensitive nucleic acid detection. J Am Chem Soc 139:1020–1028

    Article  CAS  PubMed  Google Scholar 

  194. Kang BJ et al (2015) Diagnosis of prostate cancer via nanotechnological approach. Int J Nanomed 10:6555–6569

    CAS  Google Scholar 

  195. Wu GH et al (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860

    Article  CAS  PubMed  Google Scholar 

  196. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  CAS  PubMed  Google Scholar 

  197. Yu X et al (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Xu SJ, Liu Y, Wang TH, Li JH (2011) Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem 83:3817–3823

    Article  CAS  PubMed  Google Scholar 

  199. Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943

    Article  CAS  PubMed  Google Scholar 

  200. Mani V, Chikkaveeraiah BV, Patel V, Gutkind JS, Rusling JF (2009) Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 3:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Liu X et al (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130:2780–2782

    Article  CAS  PubMed  Google Scholar 

  202. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39

    Article  CAS  PubMed  Google Scholar 

  203. Sarkar P, Ghosh D, Bhattacharyay D, Setford SJ, Turner APF (2008) Electrochemical immunoassay for free prostate specific antigen (f-PSA) using magnetic beads. Electroanalysis 20:1414–1420

    Article  CAS  Google Scholar 

  204. Song EQ et al (2011) Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5:761–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Koo KM, Carrascosa LG, Shiddiky MJA, Trau M (2016) Poly(A) extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Anal Chem 88:2000–2005

    Article  CAS  PubMed  Google Scholar 

  206. Koo KM, Carrascosa LG, Shiddiky MJA, Trau M (2016) Amplification-free detection of gene fusions in prostate cancer urinary samples using mRNA-gold affinity interactions. Anal Chem 88:6781–6788

    Article  CAS  PubMed  Google Scholar 

  207. Koo KM, Carrascosa LG, Trau M (2018) DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: application in simultaneous amplification-free analysis of multiple RNA species. Nano Res 11:940–952

    Article  CAS  Google Scholar 

  208. Koo KM, Wee EJH, Trau M (2016) Colorimetric TMPRSS2-ERG gene fusion detection in prostate cancer urinary samples via recombinase polymerase amplification. Theranostics 6:1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Koo KM, Dey S, Trau M (2018) Amplification-free multi-RNA-type profiling for cancer risk stratification via alternating current electrohydrodynamic nanomixing. Small 14:1704025

    Article  CAS  Google Scholar 

  210. Labib M et al (2018) Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nat Chem 10:489–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Koo KM, Wee EJH, Mainwaring PN, Trau M (2016) A simple, rapid, low-cost technique for naked-eye detection of urine-isolated TMPRSS2:ERG gene fusion RNA. Sci Rep 6:30722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chinen AB et al (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530–10574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wang J, Liu GD, Wu H, Lin YH (2008) Quantum-dot-based electrochemical immunoassay for high-throughput screening of the prostate-specific antigen. Small 4:82–86

    Article  CAS  PubMed  Google Scholar 

  214. Li X et al (2014) Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl Mater Interfaces 6:6406–6414

    Article  CAS  PubMed  Google Scholar 

  215. Cheng Z et al (2017) Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11:4926–4933

    Article  CAS  PubMed  Google Scholar 

  216. Koo KM, McNamara B, Wee EJH, Wang Y, Trau M (2016) Rapid and sensitive fusion gene detection in prostate cancer urinary specimens by label-free surface-enhanced Raman scattering. J Biomed Nanotechnol 12:1798–1805

    Article  CAS  PubMed  Google Scholar 

  217. Koo KM, Wee EJH, Mainwaring PN, Wang Y, Trau M (2016) Toward precision medicine: a cancer molecular subtyping nano-strategy for RNA biomarkers in tumor and urine. Small 12:6233–6242

    Article  CAS  PubMed  Google Scholar 

  218. Wang J, Koo KM, Wee EJH, Wang YL, Trau M (2017) A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples. Nanoscale 9:3496–3503

    Article  CAS  PubMed  Google Scholar 

  219. Koo KM, Wee EJH, Wang Y, Trau M (2017) Enabling miniaturised personalised diagnostics: from lab-on-a-chip to lab-in-a-drop. Lab Chip 17:3200–3220

    Article  CAS  PubMed  Google Scholar 

  220. Armenia J et al (2018) The long tail of oncogenic drivers in prostate cancer. Nat Genet 50:645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Biomarker tests for molecularly targeted therapies (2016) Key to unlocking precision medicine. The National Academies Press, Washington, DC

    Google Scholar 

  222. Hessels D et al (2017) Analytical validation of an mRNA-based urine test to predict the presence of high-grade prostate cancer. Transl Med Commun 2:5

    Article  Google Scholar 

  223. Yamoah K et al (2015) Novel biomarker signature that may predict aggressive disease in african american men with prostate cancer. J Clin Oncol 33:2789–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Simon N, Simon R (2013) Adaptive enrichment designs for clinical trials. Biostatistics 14:613–625

    Article  PubMed  PubMed Central  Google Scholar 

  225. Koo KM et al (2018) Design and clinical verification of surface enhanced Raman spectroscopy diagnostic technology for individual cancer risk prediction. ACS Nano 12:8362–8371

    Article  PubMed  Google Scholar 

  226. Simon R, Simon N (2017) Inference for multimarker adaptive enrichment trials. Stat Med 36:4083–4093

    Article  PubMed  PubMed Central  Google Scholar 

  227. Truong M, Yang B, Jarrard DF (2013) Toward the detection of prostate cancer in urine: a critical analysis. J Urol 189:422–429

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Koo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koo, K.M. (2019). Unifying Next-Generation Biomarkers and Nanodiagnostic Platforms for Precision Prostate Cancer Management. In: Advancing Gene Fusion Detection Towards Personalized Cancer Nanodiagnostics . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31000-4_1

Download citation

Publish with us

Policies and ethics