Skip to main content

Learning Deterministic Variable Automata over Infinite Alphabets

  • Conference paper
  • First Online:
Formal Methods – The Next 30 Years (FM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11800))

Included in the following conference series:

Abstract

Automated reasoning about systems with infinite domains requires an extension of automata, and in particular, finite automata, to infinite alphabets. One such model is Variable Finite Automata (VFA). VFAs are finite automata whose alphabet is interpreted as variables that range over an infinite domain. On top of their simple and intuitive structure, VFAs have many appealing properties. One such property is a deterministic fragment (DVFA), which is closed under the Boolean operations, and whose containment and emptiness problems are decidable. These properties are rare amongst the many different models for automata over infinite alphabets. In this paper, we continue to explore the advantages of DVFAs, and show that they have a canonical form, which proves them to be a particularly robust model that is easy to reason about and use in practice. Building on these results, we construct an efficient learning algorithm for DVFAs, based on the \(\textsc {L}^*\) algorithm for regular languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    we omit the transitions labeled a from every state, for clarity of presentation.

  2. 2.

    It may be the case that \(\mathcal {L}\) can be expressed with even fewer than \(k'\) variables, by a non-ordered VFA. Here, we only consider ordered DVFA.

References

  1. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 427–445. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_23

    Chapter  Google Scholar 

  2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  3. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A robust class of data languages and an application to learning. Logical Methods Comput. Sci. 10, 11 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on words with data. In: LICS, pp. 7–16. IEEE Computer Society (2006)

    Google Scholar 

  5. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. J. ACM 56(3), 1–48 (2009)

    Article  MathSciNet  Google Scholar 

  6. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_10

    Chapter  Google Scholar 

  7. Frenkel, H., Grumberg, O., Sheinvald, S.: An automata-theoretic approach to model-checking systems and specifications over infinite data domains. J. Autom. Reasoning, 1–25 (2018). https://doi.org/10.1007/s10817-018-9494-0

  8. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2_47

    Chapter  MATH  Google Scholar 

  9. Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134(2), 329–363 (1994)

    Article  MathSciNet  Google Scholar 

  10. Kaminski, M., Zeitlin, D.: Extending finite-memory automata with non-deterministic reassignment. In: Csuhaj-Varjú, E., Ézik, Z. (eds.) AFL, pp. 195–207 (2008)

    Google Scholar 

  11. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alphabets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 560–572. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4_49

    Chapter  Google Scholar 

  12. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning to divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning. Formal Methods Syst. Des. 32, 175–205 (2008)

    Article  Google Scholar 

  13. Shemesh, Y., Francez, N.: Finite-state unification automata and relational languages. Inf. Comput. 114, 192–213 (1994)

    Article  MathSciNet  Google Scholar 

  14. Tan, T.: Pebble automata for data languages: separation, decidability, and undecidability. Ph.D. thesis, Technion - Computer Science Department (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarai Sheinvald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sheinvald, S. (2019). Learning Deterministic Variable Automata over Infinite Alphabets. In: ter Beek, M., McIver, A., Oliveira, J. (eds) Formal Methods – The Next 30 Years. FM 2019. Lecture Notes in Computer Science(), vol 11800. Springer, Cham. https://doi.org/10.1007/978-3-030-30942-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30942-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30941-1

  • Online ISBN: 978-3-030-30942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics