Skip to main content

Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants

Part of the Sustainable Development and Biodiversity book series (SDEB,volume 23)

Abstract

This chapter summarizes the role of rhizosphere dwelling beneficial bacteria for the induction of tolerance against drought and salt stresses in plants. A vast proportion of world’s agricultural land is rendered less productive or completely unproductive due to different factors including water scarcity and salinity. Drought can be due to insufficient rainfall, dry spells or changes in rainfall patterns whereas salinity is because of excessive amount of salts in soil or water. This salinity can be primary (arise due to natural phenomena) or it can be secondary (anthropogenic in origin). Plants respond to drought and salinity via morphological, physiological and biochemical mechanisms. To overcome devastating effects of these stresses in plants, different strategies developed along with the traditional agricultural practices. An emerging strategy to overcome drought and salinity is the use of plant growth-promoting rhizobacteria (PGPR), which enable plants to combat these stresses by various direct and indirect mechanisms. Rhizobacteria are under extensive research for their beneficial effects, uncomplicated and cost-effective application methods and their environment-friendly behaviors. Now also serve as best alternatives to chemical and traditional methods so as to overcome to tolerate and ameliorate harmful effects in plants.

Keywords

  • Drought
  • Salinity
  • PGPR
  • Induced systemic resistance
  • ACC deaminase
  • Phytohormone
  • Proline

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30926-8_11
  • Chapter length: 57 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30926-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131(4)L:1748–1755

    Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(57):91–94

    CrossRef  CAS  PubMed  Google Scholar 

  • Afzal Z, Howton TC, Sun Y, Mukhtar MS (2016) The roles of aquaporins in plant stress responses. J Dev Biol 1:9

    CrossRef  CAS  Google Scholar 

  • Agarwal M, Dheeman S, Dubey RC, Kumar P, Maheshwari DK, Bajpai VK (2017) Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol Res 205:40–47

    CrossRef  PubMed  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    CrossRef  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013a) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    CrossRef  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013b) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44(4):1341–1348

    Google Scholar 

  • Ahmad P, Wani MR, Azooz MM, Tran LSP (2014) Improvement of crops in the era of climatic changes, vol 2. Springer Internation Publishing, p 397

    Google Scholar 

  • Alavi P, Starcher M, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci 4:141

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59(15):4119–4131

    Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision, vol 12, no. 3. ESA Working paper, Rome, FAO

    Google Scholar 

  • Ali J, Xu JL, Gao YM, Ma XF, Meng LJ, Wang Y (2017) Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). Plos One 12(3):e0172515

    Google Scholar 

  • Ali Y, Aslam Z, Sarwar G, Hussain F (2005) Genotypic and environmental interaction in advanced lines of wheat under salt-affected soils environment of Punjab. Int J Environ Sci Technol 2(3):223–228

    CrossRef  CAS  Google Scholar 

  • Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S (2012) Effect of Pseudomonas fluorescens on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Ann Biol Res 3:1054–1062

    CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1–2):305–315

    CrossRef  CAS  Google Scholar 

  • Arora NK, Kim MJ, Kang SC, Maheshwari DK (2007) Role of chitinase and β-1, 3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can J Microbiol 53(2):207–212

    CrossRef  CAS  PubMed  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18(5):611–620

    Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27(2):197–205

    Google Scholar 

  • Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharides-producing bacteria restrict sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soil 40:157–162

    CAS  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183

    CrossRef  CAS  PubMed  Google Scholar 

  • Ashraf MA, Ashraf M, Shahbaz M (2012) Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora-Morphol Distrib Func Ecol Plant 207(5):388–397

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    CrossRef  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132(1):10–20

    CrossRef  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    CrossRef  CAS  Google Scholar 

  • Asim M, Aslam M, Bano A, Munir M, Majeed A, Abbas SH (2013) Role of phytohormones in root nodulation and yield of soybean under salt stress. Am J Res Commun 1:191–208

    Google Scholar 

  • Aslantaş R, Cakmakçi R, Şahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Horticul 111(4):371–377

    CrossRef  Google Scholar 

  • Athar HR, Ashraf M (2009) Strategies for crop improvement against salinity and drought stress: an overview. Salinity and water stress. Springer, Dordrecht, pp 1–16

    Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    CrossRef  Google Scholar 

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45(S1):13–20

    Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    CrossRef  CAS  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514

    CrossRef  CAS  PubMed  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fer Soil 46(6):641–648

    CrossRef  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Res. 5:F1000 Faculty Rev-1554

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. https://doi.org/10.1038/srep34768

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. W J Microbiol Biotechnol 28(4):1327–1350

    CrossRef  CAS  Google Scholar 

  • Bindu GH, Selvakuma G, Shivashankara KS, Kumar NS (2018) Osmotolerant plant growth promoting bacterial inoculation enhances the antioxidant enzyme levels of tomato plants under water stress conditions. Int J Curr Microbiol Appl Sci 7(1):2824–2833

    CrossRef  CAS  Google Scholar 

  • Binzel ML, Hasegawa PM, Rhodes D, Handa S, Handa AK, Bressan RA (1987) Solute accumulation in tobacco cells adapted to NaCl. Plant Physiol 84(4):1408–1415

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39

    CrossRef  CAS  PubMed  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agri Res 56(11):1159–1168

    CrossRef  Google Scholar 

  • Blum A (2014) Genomics for drought resistance–getting down to earth. Func Plant Biol 41(11):1191–1198

    CrossRef  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74(4):874–880

    CrossRef  CAS  PubMed  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200(2):558–569

    CrossRef  CAS  PubMed  Google Scholar 

  • Butt HI, Yang Z, Gong Q, Chen E, Wang X, Zhao G, Li F (2017) GaMYB85 an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. BMC Plant Biol 17(1):142

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanovas EM, Barassi C A, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 343–350

    Google Scholar 

  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45(1):28–35

    Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    CrossRef  CAS  Google Scholar 

  • Castillo P, Escalante M, Gallardo M, Alemano S, Abdala G (2013) Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiol Plant 35(7):2299–2309

    CrossRef  CAS  Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3:11

    Google Scholar 

  • Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremed 16(11):1133–1147

    CrossRef  CAS  Google Scholar 

  • Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Horticul 86(3):247–260

    CrossRef  CAS  Google Scholar 

  • Chauhan AK, Maheshwari DK, Kim K, Bajpai VK (2016) Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Can J Microbiol 62(10):880–892

    Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384

    CrossRef  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annal Bot 103(4):551–560

    CrossRef  CAS  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine, an effective protectant against abiotic stress in plants. Trend Plant Sci 13:499–505

    CrossRef  CAS  Google Scholar 

  • Chen H, Li Z, Xiong L (2012) A plant microRNA regulates the adaptation of roots to drought stress. Febs Lett 586(12):1742–1747

    CrossRef  CAS  PubMed  Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158(1):34–44

    CrossRef  CAS  PubMed  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55(3):604–619

    CrossRef  CAS  PubMed  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156(1):1–9

    CrossRef  CAS  PubMed  Google Scholar 

  • Choudhary DK (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96(5):1137–1155

    CrossRef  CAS  PubMed  Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2015) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300

    CrossRef  CAS  Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35(1):276–300

    CrossRef  CAS  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front Microbiol 6:780

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 113

    Google Scholar 

  • Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54(2):97–103

    CrossRef  CAS  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90

    CrossRef  CAS  PubMed  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Bot 87(5):455–462

    CrossRef  CAS  Google Scholar 

  • Cominelli E, Conti L, Tonelli C, Galbiati M (2013) Challenges and perspectives to improve crop drought and salinity tolerance. New Biotechnol 30(4):355–361

    CrossRef  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693

    Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    CrossRef  Google Scholar 

  • Dar ZM, Masood A, Mughal AH, Asif M, Malik MA (2018) Review on Drought Tolerance in Plants Induced by Plant Growth Promoting Rhizobacteria. Int J Curr Microbiol Appl Sci 7(5):1. https://www.ijcmas.com/7-5-2018/Zaffar%20Mahdi%20Dar,%20et%20al.pdf

  • Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    CrossRef  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    CrossRef  Google Scholar 

  • Davies PJ (2013) Plant hormones: physiology, biochemistry and molecular biology. Springer Science & Business Media, p 796

    Google Scholar 

  • De Micco V, Aronne G (2009) Seasonal dimorphism in wood anatomy of the Mediterranean Cistus incanus L. subsp. incanus. Trees 23(5):981–989

    Google Scholar 

  • del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90

    CrossRef  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172(1):11–21

    CrossRef  CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ 32(12):1682–1694

    CrossRef  CAS  Google Scholar 

  • Dinesh R, Srinivasan V, Hamza S, Sarathambal C, Anke Gowda SJ, Ganeshamurthy AN, Divya VC (2018) Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma 321:173–186

    CrossRef  CAS  Google Scholar 

  • Divya B, Kumar MD (2011) Plant-microbe interaction with enhanced bioremediation. Res J Biotechnol 6(1):72–79

    CAS  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water limited environments? In: 4th International crop science congress

    Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157(3):361–379

    CrossRef  CAS  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    CrossRef  CAS  PubMed  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of a β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and ABA synthesis in rice. Plant Physiol 110

    Google Scholar 

  • Egamberdieva D (2013) The role of phytohormone producing bacteria in alleviating salt stress in crop plants. Biotechnological techniques of stress tolerance in plants. Biotechnological techniques of stress tolerance in plants. Studium, Houston, TX, pp 21–39

    Google Scholar 

  • El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agr 22(3):243–253

    CrossRef  CAS  Google Scholar 

  • Elnaggar AA, Noller JS (2009) Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas. Remote Sens 2(1):151–165

    CrossRef  Google Scholar 

  • Fan X, Hu H, Huang G, Huang F, Li Y, Palta J (2015) Soil inoculation with Burkholderia sp. LD-11 has positive effect on water-use efficiency in inbred lines of maize. Plant Soil 390(1–2): 337–349

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agr Crop Sci 194(5):325–333

    Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    CrossRef  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Botany 55(396):307–319

    CrossRef  CAS  Google Scholar 

  • Foyer CH, Rasool B, Davey JW, Hancock RD (2016) Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J Exp Bot 67(7):2025–2037

    CrossRef  CAS  PubMed  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18(8):2021–2034

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54(9):374–381

    Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    CrossRef  PubMed  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CAB International, p 544

    Google Scholar 

  • Ghorbanpour M, Hatami M, Khavazi K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turkish J Biol 37(3):350–360

    CAS  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trend Plant Sci 19(10):623–630

    CrossRef  CAS  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Bena G (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316(5829):1307–1312

    CrossRef  PubMed  Google Scholar 

  • Glick BR (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CrossRef  CAS  Google Scholar 

  • Glick BR, Pasternak JJ (2003) Plant growth promoting bacteria. In: Molecular biology-principles and applications of recombinant DNA, pp 436–454

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    CrossRef  CAS  PubMed  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agri 2(1):1127500

    Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol 2013: Article ID 869697

    Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2017) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbio Res 206:131–140

    CrossRef  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37(3):395–412

    CrossRef  CAS  Google Scholar 

  • Grover M, Madhubala R, Ali SZ, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54(9):951–961

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F, Guzelordu T (2005) Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Arch Agr Soil Sci 51(6):687–695

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736

    Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Reg 32(2):245–258

    CrossRef  CAS  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Res Int 2016: Article ID 6284547

    Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition-a review. Am J Exp Agri 3(2):374

    CAS  Google Scholar 

  • Hahm MS, Son JS, Hwang YJ, Kwon DK, and Ghim SY (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27(10):1790–1797

    Google Scholar 

  • Hamdia MAES, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Reg 44(2):165–174

    CrossRef  CAS  Google Scholar 

  • Han D, Wang L, Luo Y (2018) Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth. Microbiol Res 208:1–11

    CrossRef  CAS  PubMed  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    CrossRef  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51(1):463–499

    CrossRef  CAS  Google Scholar 

  • He AL, Niu SQ, Zhao Q, Li YS, Gou JY, Gao HJ, Zhang JL (2018) Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron. Int J Mole Sci 19(2):469

    CrossRef  CAS  Google Scholar 

  • Hontzeas N, Saleh SS, Glick BR (2004) Changes in gene expression in canola roots induced by ACC-deaminase-containing plant-growth-promoting bacteria. Mol Plant Microb Inter 17(8):865–871

    CrossRef  CAS  Google Scholar 

  • Iqbal N, Umar S, Nazar R (2014) Manipulating osmolytes for breeding salinity-tolerant plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance a sustainable approach. Elsevier Inc., UK. ISBN: 978-0-12-800875-1

    Google Scholar 

  • Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jampeetong A, Brix H (2009) Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquat Bot 91(3):181–186

    CrossRef  CAS  Google Scholar 

  • Janssen J, Weyens N, Croes S, Beckers B, Meiresonne L, Van Peteghem P, Vangronsveld J (2015) Phytoremediation of metal contaminated soil using willow: exploiting plant-associated bacteria to improve biomass production and metal uptake. Int J Phytorem 17(11):1123–1136

    CrossRef  CAS  Google Scholar 

  • Jarvis PG, Jarvis MS (1963) The water relations of tree seedlings: IV. Some aspects of the tissue water relations and drought resistance. Physiol Plant 16(3):501–516

    Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    CrossRef  Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J Agric Res 73(3):213–219

    CrossRef  Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mole Biol Plant 20(2):201–207

    CrossRef  CAS  Google Scholar 

  • Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156(2):647–662

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CW, Ye YQ, Zheng SJ (2013) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113(1):7–18

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph EA, Mohanan KV (2013) A study on the effect of salinity stress on the growth and yield of some native rice cultivars of Kerala state of India. Agric Fores Fisher 2(3):141–150

    CrossRef  Google Scholar 

  • Kamal R, Gusain YS, Kumar V (2014) Interaction and symbiosis of AM fungi, Actinomycetes and Plant Growth Promoting Rhizobacteria with plants: strategies for the improvement of plants health and defense system. Int J Curr Microbiol Appl Sci 3(7):564–585

    Google Scholar 

  • Kamei A, Dolai AK, Kamei A (2014) Role of hydrogen cyanide secondary metabolite of plant growth promoting rhizobacteria as biopesticides of weeds. Global J Sci Front Res 14(6):109–112

    Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim M-J, Park JM, Kim BR, Shin D-H, Lee IJ (2014a) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    CrossRef  CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Hamayun M, Hussain J, Joo GJ, You YH, Lee IJ (2012) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50(6):902–909

    Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Lee IJ (2014b) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Inter 9(1):673–682

    Google Scholar 

  • Karlidag H, Ertan Y, Metin T, Mucahit P, Figen D (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria ananassa). HortScience 48(5):563–567

    CrossRef  CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, El-Daim IAA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Reg 32(1):122–130

    CrossRef  CAS  Google Scholar 

  • Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biol Plant 61(2):201–209

    CrossRef  CAS  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42

    CrossRef  CAS  Google Scholar 

  • Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients-a field trial. Aust J Crop Sci 7(2):249

    CAS  Google Scholar 

  • Kaya C, Tuna AL, Okant AM (2010) Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk J Agric For 34(6):529–538

    Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    CrossRef  CAS  PubMed  Google Scholar 

  • Khalid S, Parvaiz M, Nawaz K, Hussain H, Arshad A, Shawaka S, Sarfaraz Z, Waheed T (2013) Effect of Indole Acetic Acid (IAA) on morphological: biochemical and chemical attributes of Two varieties of maize (Zea mays L.) under salt stress. World Appl Sci J 26:1150–1159

    CAS  Google Scholar 

  • Khodair TA, Galal GF, El-Tayeb TS (2008) Effect of inoculating wheat seedlings with exopolysaccharide-producing bacteria in saline soil. J Appl Sci Res 4:2065–2070

    Google Scholar 

  • Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172(4):773–787

    CrossRef  CAS  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochem 33(2):389–397

    CrossRef  CAS  Google Scholar 

  • Kloepper JW, Reddy MS, Kenney DS, Kokalis-Burelle N, Martinez-Ochoa N, Vavrina CS (2004) Theory and application for rhizobacteria in transplant production and yield enhancement. Acta Horticul 631:219–229

    CrossRef  Google Scholar 

  • Kohler J, Hernández JA, Caravacaa F, Roldána A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    CrossRef  CAS  PubMed  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Botany 65(2–3):245–252

    CrossRef  CAS  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11(3):e0152478

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291

    CrossRef  CAS  PubMed  Google Scholar 

  • Kumar A, Dixit S, Ram T, Yadaw RB, Mishra KK, Mandal NP (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65(21):6265–6278

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D (2005) Breeding for drought resistance. In: Abiotic stresses. CRC Press, pp 167–198

    Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34:558–573

    CrossRef  CAS  Google Scholar 

  • Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53(370):773–787

    CrossRef  CAS  PubMed  Google Scholar 

  • Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Chu C (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci 111(27):10013–10018

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liu XM, Zhang H (2015) The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front Plant Sci 6:774

    PubMed  PubMed Central  Google Scholar 

  • Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell DB, Rosenzweig C (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Climat Chang 6(12):1130

    CrossRef  Google Scholar 

  • Liu J, Xia Z, Wang M, Zhang X, Yang T, Wu J (2013) Overexpression of a maize E3 ubiquitin ligase gene enhances drought tolerance through regulating stomatal aperture and antioxidant system in transgenic tobacco. Plant Physio Biochem 73:114–120

    CrossRef  CAS  Google Scholar 

  • Lu GH, Ren DL, Wang XQ, Wu JK, Zhao MS (2010) Evaluation on drought tolerance of maize hybrids in China. J Maize Sci 3:20–24

    Google Scholar 

  • Lugtenberg BJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. Mole Microbial Ecol Rhizosphere 2:561–573

    CAS  Google Scholar 

  • Ma W, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48(11):947–954

    CrossRef  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224(2):268–278

    CrossRef  CAS  PubMed  Google Scholar 

  • Maheshwari DK, Aeron A, Dubey RC, Agarwal M, Dheeman S, Shukla S (2014) Multifaceted beneficial associations with Pseudomonas and rhizobia on growth promotion of Mucuna pruriens L. J Pure Appl Microbiol 8(6):4657–4667

    Google Scholar 

  • Maheshwari DK, Kumar S, Kumar B, Pandey P (2010) Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Ind J Microbiol 50(4):425–431

    CrossRef  CAS  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876

    PubMed  PubMed Central  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55(394):27–34

    CrossRef  CAS  PubMed  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013:248078

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Maqbool MA, Aslam M, Ali H (2017) Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breed 136(3):300–318

    Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552

    CrossRef  CAS  PubMed  Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    CrossRef  CAS  PubMed  Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Reg 28(2):115–124

    CrossRef  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    CrossRef  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    CrossRef  CAS  Google Scholar 

  • Meena MK, Gupta S, Datta S (2016) Antifungal potential of PGPR, their growth promoting activity on seed germination and seedling growth of winter wheat and genetic variabilities among bacterial isolates. Int J Cur Microbiol Appl Sci 5(1):235–243

    CrossRef  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    CrossRef  CAS  PubMed  Google Scholar 

  • Mhadhbi H, Jebara M, Limam F, Aouani ME (2004) Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea-rhizobia symbioses: modulation by salt stress. Plant Physiol Biochem 42(9):717–722

    CrossRef  CAS  PubMed  Google Scholar 

  • Maheshwari DK (ed) (2010) Microbiology monographs (V-18). Plant growth and health promoting bacteria. Springer, Heidelberg, Germany. ISBN: 978-3-642-13611-5

    Google Scholar 

  • Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76(2):342–351

    CrossRef  CAS  PubMed  Google Scholar 

  • Minocheherhomji A, Yasmin H, Naz R, Bano A, Keyani R, Hussain I (2018) Pseudomonas putida improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers. Soil Sci Plant Nut 1–6

    Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Ann Rev Plant Biol 61:443–462

    CrossRef  CAS  Google Scholar 

  • Munns R (2002) Salinity, growth and phytohormones. In: Salinity: environment-plants-molecules, Springer Dordrecht 271–290

    Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208(3):668–673

    CrossRef  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CrossRef  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Plett D (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30(4):360

    CrossRef  CAS  PubMed  Google Scholar 

  • Mwadzingeni L, Shimelis H, Dube E, Laing MD, Tsilo TJ (2016) Breeding wheat for drought tolerance: progress and technologies. J Integ Agric 15(5):935–943

    CrossRef  Google Scholar 

  • Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7(4):354–360

    CrossRef  CAS  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A, (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29 (1):6–22

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53(10):1141–1149

    CrossRef  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55(11):1302–1309

    CrossRef  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Anna Microbiol 63(1):225–232

    CrossRef  CAS  Google Scholar 

  • Narula N, Kothe E, Behl RK (2009) Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual 82(2):122–130

    CAS  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701

    CrossRef  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    CrossRef  CAS  PubMed  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    CrossRef  CAS  Google Scholar 

  • Nawrotzki RJ, Bakhtsiyarava M (2017) International climate migration: evidence for the climate inhibitor mechanism and the agricultural pathway. Popul Space Place 23(4):e2033

    CrossRef  PubMed  Google Scholar 

  • Naz R, Bano A (2013) Influence of exogenously applied SA and PGPR inoculation on the growth and physiology of sunflower (Helianthus annus L.) under salt stress. Pak J Bot 45(2):367–373

    Google Scholar 

  • Naz R, Bano A (2015) Molecular and Physiological responses of Sunflower (Helianthus annus L.) to PGPR and SA under Salt Stress. Pak J Bot 47(1):35–42

    Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:21

    Google Scholar 

  • Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30(4):329–377

    CrossRef  CAS  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    CrossRef  PubMed  Google Scholar 

  • Neumann PM (1995) The role of cell wall adjustments in plant resistance to water deficits. Crop Sci 35(5):1258–1266

    CrossRef  Google Scholar 

  • Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Anna Bot 101(7):901–907

    CrossRef  CAS  Google Scholar 

  • Ngumbi EN (2011) Mechanisms of olfaction in parasitic wasps: analytical and behavioral studies of response of a specialist (Microplitis croceipes) and a generalist (Cotesia marginiventris) parasitoid to host-related odor. PhD thesis, Auburn University, Albama USA

    Google Scholar 

  • Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    CrossRef  Google Scholar 

  • Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Li B (2011) Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS One 6(3):e17961

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu SQ, Li HR, Paré PW, Aziz M, Wang SM, Shi H, Guo Q (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407(1–2):217–230

    CrossRef  CAS  Google Scholar 

  • Nosheen A, Yasmin H, Naz R, Bano A, Keyani R, Hussain I (2018) improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers. Soil Sci Plant Nut 1–6

    Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Ahmed AH (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    CrossRef  CAS  PubMed  Google Scholar 

  • Öğüt M, Er F, Neumann G (2011) Increased proton extrusion of wheat roots by inoculation with phosphorus solubilising microorganims. Plant Soil 339(1–2):285–297

    CrossRef  CAS  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Sig Beh 3(4):263–265

    CrossRef  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117(3):766–773

    Google Scholar 

  • Panwar M, Tewari R, Gulati A, Nayyar H (2016) Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiol Plant 38:278

    CrossRef  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    CrossRef  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18(2):167–174

    CrossRef  CAS  Google Scholar 

  • Patel TS, Minocheherhomji FP (2018) Plant growth promoting rhizobacteria: blessing to agriculture. Int J Pure Appl Biosci 6(2):481–492

    CrossRef  Google Scholar 

  • Pawar ST, Bhosale AA, Gawade TB, Nale TR (2017) Isolation, screening and optimization of exopolysaccharide producing bacterium from saline soil. J Microbiol Biotechnol Res 3(3):24–31

    Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9(7):747–758

    CrossRef  CAS  PubMed  Google Scholar 

  • Peng S, Ismail AM (2004) Physiological basis of yield and environmental adaptation in rice. Physiol Biotechnol Integ Plant Breed 83–140

    Google Scholar 

  • Perata P, Voesenek LA (2007) Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trend Plant Sci 12(2):43–46

    CrossRef  CAS  Google Scholar 

  • Pereyra MA, Garcia P, Colabelli MN, Barassi CA, Creus CM (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97

    CrossRef  Google Scholar 

  • Perrig D, Boiero M, Masciarelli O, Penna C, Ruiz O, Cassán F, Luna M (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechno 75(5):1143–1150

    CrossRef  CAS  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Bacteria in Agrobiology: crop ecosystems, Springer, Berlin, pp 295–343

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int J Agric Sci 3(1):181–188

    Google Scholar 

  • Prathap M, Kumari BR (2015) A critical review on plant growth promoting rhizobacteria. J Plant Pathol Microbiol 6(4):1

    Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38(4):282–295

    CrossRef  Google Scholar 

  • Qudsaia B, Noshinil Y, Asghari B, Nadia Z, Abida A, Fayazul H (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45:13–20

    Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. Plos One 12(11):e0187412

    Google Scholar 

  • Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afri J Microbiol Res 10(15):486–504

    CrossRef  CAS  Google Scholar 

  • Ramegowda V, Kumar S (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    CrossRef  CAS  PubMed  Google Scholar 

  • Rao SM, Shaw MEA (1985) A review of research on sugar cane soils of Jamaica. In: 23. Sugar technologists’ conference, (Trinidad and Tobago), 4–8 Mar 1985

    Google Scholar 

  • Rathore P (2014) A review on approaches to develop plant growth promoting rhizobacteria. Inter J Rec Sci Res 5:403–407

    Google Scholar 

  • Raza FA, Faisal M (2013) Growth promotion of maize by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert. Pak Aust J Crop Sci 7(11):1693

    Google Scholar 

  • Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    CrossRef  CAS  PubMed  Google Scholar 

  • Rhodes D, Verslues PE, Sharp RE (1999) Role of amino acids in abiotic stress resistance. In: Singh BK (ed) Plant amino acids: biochem biotechnol marcel dekker NY, 319–356

    Google Scholar 

  • Rhodes D, Handa S (1989) Amino acid metabolism in relation to osmotic adjustment in plant cells. In: Environmen stress plant. Springer, Berlin 41–62

    Google Scholar 

  • Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88

    CrossRef  CAS  PubMed  Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Salazar J, Suarez R, Caballero-Mellado J, Itturiaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    CrossRef  CAS  PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    CrossRef  Google Scholar 

  • Rowley G (1993) Multinational and national competition for water in the Middle East: Towards the deepening crisis. J Environ Manag 39(3):187–197

    CrossRef  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    CrossRef  CAS  PubMed  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    CrossRef  CAS  Google Scholar 

  • Saakre M, Baburao TM, Salim AP, Ffancies RM, Achuthan VP, Thomas G, Sivarajan SR (2017) Identification and characterization of genes responsible for drought tolerance in rice mediated by Pseudomonas fluorescens. Rice Sci 24(5):291–298

    CrossRef  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Poll Res 23(5):3984–3999

    CrossRef  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Sanalibaba P, Çakmak GA (2016) Exopolysaccharides production by lactic acid bacteria. Appl Microbiol 2:115

    Google Scholar 

  • Sandhya VSKZ, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Reg 62(1):21–30

    Google Scholar 

  • Sandhya VZAS, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fer Soil 46(1):17–26

    CrossRef  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    CrossRef  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33(1):203–209

    CrossRef  CAS  Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377(1–2):111–126

    CrossRef  CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–341

    CrossRef  PubMed  Google Scholar 

  • Shafi M, Bakht J, Khan MJ, Khan MA, Anwar S (2010) Effect of salinity on yield and ion accumulation of wheat genotypes. Pak J Bot 4113–4121

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006a) Effect of plant growth promoting rhizobacteria containing ACC‐deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42(2):155–159

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006b) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38(9):2971–2975

    Google Scholar 

  • Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34

    CrossRef  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59(2):89–94

    CrossRef  CAS  Google Scholar 

  • Sharma CK, Vishnoi VK, Dubey RC, Maheshwari DK (2018) A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere 5:71–75

    CrossRef  Google Scholar 

  • Sheteawi SA (2007) Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. Inter J Agric Biol 2007 http://agris.fao.org/agris-search/search.do?recordID=PK2007001114

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115(3):1211–1219

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Xiong L, Stevenson B, Lu T, Zhu JK (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14(3):575–588

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec 5(3):291–317

    Google Scholar 

  • Shkolnik-Inbar D, Adler G, Bar-Zvi D (2013) ABI4 downregulates expression of the sodium transporter HKT1 in Arabidopsis roots and affects salt tolerance. Plant J 73:993–1005

    CrossRef  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Sau J Biol Sci 22(2):123–131

    CrossRef  CAS  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant growth promoting rhizobacteria. J Plant Growth Regul 31:195–206

    CrossRef  CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1 carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    CrossRef  CAS  PubMed  Google Scholar 

  • Sinclair TR, Muchow RC (2001) System analysis of plant traits to increase grain yield on limited water supplies. Agric J 93(2):263–270

    Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2014) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Geomicrobiol Biogeochem. Springer, Berlin, 175–198

    Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203

    CrossRef  CAS  PubMed  Google Scholar 

  • SkZ A, Vardharajula S, Vurukonda SSKP (2018) Transcriptomic profiling of maize (Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under drought stress. Ann Microbiol 68(6):331–349

    Google Scholar 

  • Smith DL, Gravel V, Yergeau E (2017) Signaling in the phytomicrobiome. Front Plant Sci 8:611

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240

    CrossRef  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism- plant signaling. FEMS Microbiol Rev 31(4):425–448

    CrossRef  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506

    CrossRef  CAS  PubMed  Google Scholar 

  • Subramanian S, Ricci E, Souleimanov A, Smith DL (2016) A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress. PLoS One 11(8):e0160660

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukweenadhi J, Balusamy SR, Kim YJ, Lee CH, Kim YJ, Koh SC, Yang DC (2018) A Growth Promoting Bacteria, Paenibacillus yonginensis DCY84T Enhanced Salt Stress Tolerance by Activating Defense-Related Systems in Panax ginseng. Front Plant Sci 9:813

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Swain DL, Singh D, Horton DE, Mankin JS, Ballard TC, Diffenbaugh NS (2017) Remote linkages to anomalous winter atmospheric ridging over the northeastern Pacific. J Geophy Res Atmos 22:122

    Google Scholar 

  • Syvertsen JP, Boman B, Tucker DPH (1989) Salinity in Florida citrus production. Proceed Florida State Horticul Soc 102:61–64

    Google Scholar 

  • Szabolcs I (1992) Salinization of soil and water and its relation to desertification. Desertification Control Bull 21:32–37

    Google Scholar 

  • Szabolcs I (1994) Soils and salinisation. In: Handbook of Plant Crop Stress 3–11

    Google Scholar 

  • Tanji KK (1990) Nature and extent of agricultural salinity. In: Agricultural salinity assessment and management 71–92

    Google Scholar 

  • Tanwir F, Saboor A, Nawaz N (2003) Soil salinity and the livelihood strategies of small farmers: a case study in Faisalabad district, Punjab. Pak Int J Agric Biol 5:440–441

    Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mole Plant Microbe Interact 12(11):951–959

    CrossRef  CAS  Google Scholar 

  • Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    CrossRef  CAS  PubMed  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Torres RO, Henry A (2016) Yield stability of selected rice breeding lines and donors across conditions of mild to moderately severe drought stress. Field Crop Res 220:37–45

    CrossRef  Google Scholar 

  • Tosens T, Niinemets U, Vislap V, Eichelmann H, Castro Diez P (2012) Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ 35(5):839–856

    CrossRef  CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Inoue H (2013) Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Gen 45(9):1097

    CrossRef  CAS  Google Scholar 

  • Ulloa-Ogaz AL, Muñoz-Castellanos LN, Nevárez-Moorillón GV (2015) Biocontrol of phytopathogens: antibiotic production as mechanism of control. In: The battle against microbial pathogens: basic science, technological advances and educational programes. Formatex Research Center, Spain, pp 305–309

    Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293

    CrossRef  CAS  PubMed  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551

    CrossRef  CAS  PubMed  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56(11):1274–1288

    CrossRef  CAS  PubMed  Google Scholar 

  • Valifard M, Mohsenzadeh S, Niazi A, Moghadam A (2015) Phenylalanine ammonia lyase isolation and functional analysis of phenylpropanoid pathway under salinity stress in ‘Salvia’ species. Aus J Crop Sci 9(7):656

    CAS  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60(1):9–18

    CrossRef  CAS  PubMed  Google Scholar 

  • Vardharajula S, Ali SKZ, Grover M, Reddy G, Bandi V (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soil 46:17–26

    CrossRef  CAS  Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14

    Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–1376

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang H, Yamauchi A (2006) Growth and function of rootsunder abiotic stress soils. In: Huang B (ed) Plant–environment interactions, 3rd edn. CRC, Taylor and Francis Group, LLC, New York, pp 271–320

    CrossRef  Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yang A, Yin H, Zhang J (2008) Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J Integ Plant Biol 50(4):427–434

    CrossRef  CAS  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na + accumulation. Funct Plant Biol 43(2):161–172

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zhang J (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from C hinese fields with contaminated soils. Microb Biotechnol 8(3):404–418

    CrossRef  CAS  PubMed  Google Scholar 

  • Weigand C (2011) Wheat import projections towards 2050. US Wheat Associates, USA

    Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33(4):510–525

    CrossRef  CAS  PubMed  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63(9):3499–3509

    CrossRef  CAS  PubMed  Google Scholar 

  • Wrathall DJ, Van Den Hoek J, Walters A, Devenish A (2018) Water stress and human migration: a global, georeferenced review of empirical research. Land Water Discus Paper 11

    Google Scholar 

  • Wu Z, Yue H, Lu J, Li C (2012) Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J Microbiol Biotechnol 28(6):2383–2393

    CrossRef  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25(2):131–139

    CrossRef  CAS  PubMed  Google Scholar 

  • Xuemei J, Dong B, Shiran B, Talbot MJ, Edlington JE, Trijntje H, Dolferus R (2011) Control of ABA catabolism and ABA homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 111

    Google Scholar 

  • Yadav SK, Jyothi Lakshmi N, Maheswari M, Vanaja M, Venkateswarlu B (2005) Influence of water deficit at vegetative, anthesis and grain filling stages on water relation and grain yield in Sorghum. Indian J Plant Physiol 10:20–22

    Google Scholar 

  • Yadav OP (2010) Drought response of pearl millet landrace-based populations and their crosses with elite composites. Field Crop Res 118(1):51–56

    CrossRef  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2):251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92(11):775–781

    CrossRef  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trend Plant Sci 14(1):1–4

    CrossRef  CAS  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54

    CrossRef  CAS  Google Scholar 

  • Yasmin H, Bano A, Samiullah A (2013) Screening of PGPR isolates from semi-arid region and their implication to alleviate drought stress. Pak J Bot 45:51–58

    CAS  Google Scholar 

  • Yasmin H, Nosheen A, Naz R, Bano A, Keyani R (2017) l-tryptophan-assisted PGPR-mediated induction of drought tolerance in maize (Zea mays L.). J Plant Interact 12(1):567–578

    Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49(323):915–929

    CAS  Google Scholar 

  • Yoon GM, Kieber JJ (2013) 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants. Aob Plant 5:17

    CrossRef  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    CrossRef  CAS  PubMed  Google Scholar 

  • Zafar-ul-Hye M, Ahmad M, Shahzad SM (2013) Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environ 32:79–86

    CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo SI, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Pare PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe Interact 23:1097–1104

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceed Nat Acad Sci 98(22):12832–12836

    CrossRef  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21(6):737–744

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42(5):689–707

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, Jin J (2018) Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Inter J Environ Res Public Health 5:15

    Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2014) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66(3):647–656

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3. 13 activation. Plant Physiol 151(4):1889–1901

    Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trend. Plant Sci 6(2):66–71

    CrossRef  CAS  Google Scholar 

  • Zia MA, Yasmin H, Shair F, Jabeen Z, Mumtaz S, Hayat Z, Hassan MN (2018) glucanolytic rhizobacteria produce antifungal metabolites and elicit ROS scavenging system in sugarcane. Sugar Tech 1–12 https://doi.org/10.1007/s12355-018-0654-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira Yasmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Yasmin, H., Nosheen, A., Naz, R., Keyani, R., Anjum, S. (2019). Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. In: Maheshwari, D., Dheeman, S. (eds) Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_11

Download citation