Skip to main content

Exploring the System Dynamics of Industrial Symbiosis (IS) with Machine Learning (ML) Techniques—A Framework for a Hybrid-Approach

  • Conference paper
  • First Online:
Advances and New Trends in Environmental Informatics

Part of the book series: Progress in IS ((PROIS))

Abstract

Artificial Intelligence (AI) is one of the driving forces of the digital revolution in terms of the areas of application that already exist and those that are emerging as potential. One can envision the application field of Industrial Symbiosis (IS), so which potential role can AI play in the context of IS systems and how can AI support/contribute to the facilitation of IS systems, which is explored in more detail in this paper. A systematic literature review was conducted to identify problem-/improvement driven fields of action in the context of IS and to present the current state of ICT tools for IS systems with corresponding implications. This led to the selection of suitable Machine Learning (ML) techniques, proposing a general framework of a combinatorial approach of Agent-Based Modelling (ABM) and ML for exploring the system dynamics of IS. This hybrid-approach opens up the simulation of scenarios with optimally utilized IS systems in terms of system adaptability and resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chertow, M.R.: Industrial symbiosis. Encycl. Energy 3, 407–415 (2004)

    Google Scholar 

  2. Chertow, M.R.: Industrial ecology in a developing context. In: Clini, C., Musu, I., Gullino, M. (eds.) Sustainable Development and Environmental Management, pp. 1–19. Springer (2008)

    Google Scholar 

  3. Herczeg, G., Akkerman, R., Hauschild, M.Z.: Supply chain management in industrial symbiosis networks. Ph.D. thesis, Technical University of Denmark, pp. 7–45 (2016)

    Google Scholar 

  4. EEA, European Environment Agency: More from less—material resource efficiency in Europe. EEA report No. 10/2016 Technical report European Environment Agency (2016)

    Google Scholar 

  5. Li, X.: Industrial Ecology and Industry Symbiosis for Environmental Sustainability—Definitions, Frameworks and Applications. Palgrave Macmillan (2018). ISBN 978-3-319-67500-8. https://doi.org/10.1007/978-3-319-67501-5

  6. Chertow, M.R.: Industrial symbiosis: literature and taxonomy. Ann. Rev. Energy Environ. 25(1), 313–337 (2000)

    Article  Google Scholar 

  7. Lombardi, D.R., Laybourn, P.: Redefining industrial symbiosis. J. Ind. Ecol. 16(1), 28–37 (2012)

    Article  Google Scholar 

  8. Taddeo, R., Simboli, A., Morgante, A., Erkman, S.: The development of industrial symbiosis in existing contexts. Experiences from three Italian clusters. Ecol. Econ. 139, 55–67 (2017). https://doi.org/10.1016/j.ecolecon.2017.04.006

    Article  Google Scholar 

  9. Ruiz-Puente, C., Bayona, E.: Modelling of an industrial symbiosis network as a supply chain. Conference Paper (2017)

    Google Scholar 

  10. Van Capelleveen, G., Amrit, C., Yazan, D.M.: A literature survey of information systems facilitating the identification of industrial symbiosis. In: Otjacques, B., et al. (eds.) From Science to Society, Progress in IS. Springer International Publishing AG (2018). https://doi.org/10.1007/978-3-319-65687-8_14

  11. Yeo, Z., Masi, D., Low, J.S.C., Ng, Y.T., Tan, P.S., Barnes, S.: Tools for promoting industrial symbiosis: a systematic review. J. Ind. Ecol. 1–22 (2019). https://doi.org/10.1111/jiec.12846

  12. Gambus, P., Shafer, S.L.: Artificial Intelligence for everyone. Anesthesiology 128(3), 431–433 (2018). https://doi.org/10.1097/aln.0000000000001984

  13. Shorten, C.: Machine learning vs. Deep learning (2018). https://towardsdatascience.com/machine-learning-vs-deep-learning-62137a1c9842. Accessed 18 June 2019

  14. Biegler-König, F., Bärmann, F.: A learning algorithm for multilayered neural networks based on linear least squares problems. Neural Netw. 6(1), 127–131 (1993). https://doi.org/10.1016/S0893-6080(05)80077-2

    Article  Google Scholar 

  15. Sarle, W.: Neural networks and statistical models. In: Proceedings of the Nineteenth Annual SAS Users Group International Conference, Cary, pp. 1538–1550. SAS Institute, NC (1994). ftp://ftp.sas.com/pub/neural/neural1.ps

    Google Scholar 

  16. Meissner, G.: Artificial intelligence-consciousness and conscience (2018). https://doi.org/10.13140/rg.2.2.36626.76488

  17. Earley, K.: Industrial symbiosis: harnessing waste energy and materials for mutual benefit. Renew. Energy Focus 16(4), 75–77 (2015). https://doi.org/10.1016/j.ref.2015.09.011

  18. Mirata, M.: Experiences from early stages of a national industrial symbiosis programme in the UK: determinants and coordination challenges. J. Clean. Prod. 12, 967–983 (2004)

    Article  Google Scholar 

  19. Pakarinen, S., Mattila, T., Melanen, M., Nissinen, A., Sokka, L.: Sustainability and industrial symbiosis—the evolution of a Finnish forest industry complex. Resour. Conserv. Recycl. 54(12), 1393–1404 (2010). https://doi.org/10.1016/j.resconrec.2010.05.015

    Article  Google Scholar 

  20. Yu, F., Han, F., Cui, Z.: Evolution of industrial symbiosis in an eco-industrial park in China. J. Clean. Prod. 87, 339–347 (2015). https://doi.org/10.1016/j.jclepro.2014.10.058

    Article  Google Scholar 

  21. Yuan, Z., Shi, L.: Improving enterprise competitive advantage with industrial symbiosis: case study of a smeltery in China. J. Clean. Prod. 17, 1295–1302 (2009). https://doi.org/10.1016/j.jclepro.2009.03.016

    Article  Google Scholar 

  22. Zhu, Q., Lowe, E.A., Wei, Y., Barnes, D.: Industrial symbiosis in China: a case study of the Guitang Group. J. Ind. Ecol. 11, 31–42 (2008) https://doi.org/10.1162/jiec.2007.929

  23. Dong, L., Fujita, T., Zhang, H., et al.: Promoting low-carbon city through industrial symbiosis: a case in China by applying HPIMO model. Energy Policy 61, 864–873 (2013). https://doi.org/10.1016/j.enpol.2013.06.084

  24. Cui, H., Liu, C., Côté, R., Liu, W.: Understanding the evolution of industrial symbiosis with a system dynamics model: a case study of Hai Hua industrial symbiosis, China. Sustainability 10(3873) (2018). https://doi.org/10.3390/su10113873

  25. Golev, A., Corder, G., Giurcob, D.P.: Industrial symbiosis in Gladstone: a decade of progress and future development. J. Clean. Prod. 84, 421–429 (2014). https://doi.org/10.1016/j.jclepro.2013.06.054

    Article  Google Scholar 

  26. Bain, A., Shenoy, M., Ashton, W., Chertow, M.: Industrial symbiosis and waste recovery in an Indian industrial area. Resour. Conserv. Recycl. 54, 1278–1287 (2010)

    Article  Google Scholar 

  27. Notarnicola, B., Tassielli, G., Renzulli, P.A.: Industrial Symbiosis in the Taranto industrial district: current level, constraints and potential new synergies. J. Clean. Prod. 122, 133–143 (2016). https://doi.org/10.1016/j.jclepro.2016.02.056

    Article  Google Scholar 

  28. Alkaya, E., Böğürcü, M., Ulutaş, F.: Industrial symbiosis in Iskenderun Bay: a journey from pilot applications to a national program in Turkey. In: Conference Paper, Proceedings of the Conference SYMBIOSIS 2014 (2014)

    Google Scholar 

  29. Chertow, M.: Uncovering industrial symbiosis. J. Ind. Ecol. 11(11), 11–30 (2007)

    Google Scholar 

  30. Martin, M.: Industrial Symbiosis in the Biofuel Industry: quantification of the environmental performance and identification of synergies. Dissertation No. 1507, Linköping Studies in Science and Technology (2013). ISSN: 0345-7524

    Google Scholar 

  31. Song, X., Geng, Y., Dong, H., Chen, W.: Social network analysis on industrial symbiosis: a case of Gujiao eco-industrial park. J. Clean. Prod. 193, 414–423 (2018). https://doi.org/10.1016/j.jclepro.2018.05.058

    Article  Google Scholar 

  32. Ashton, W.S.: Understanding the organization of industrial ecosystems: a social network approach. J. Ind. Ecol. 12(1), 34–51 (2008)

    Article  Google Scholar 

  33. Chopra, S.S., Khanna, V.: Understanding resilience in industrial symbiosis networks: insights from network analysis. J. Environ. Manage. 141, 86–94 (2014)

    Article  Google Scholar 

  34. Doménech, T., Davies, M.: Structure and morphology of industrial symbiosis networks: the case of Kalundborg. Procedia Soc. Behav. Sci. 10, 79–89 (2011)

    Article  Google Scholar 

  35. Doménech, T., Davies, M.: The social aspects of industrial symbiosis: the application of social network analysis to industrial symbiosis networks. Prog. Ind. Ecol. 6(1), 68–99 (2009)

    Article  Google Scholar 

  36. Zhang, Y., Zheng, H., Chen, B., Yang, N.: Social network analysis and network connectedness analysis for industrial symbiotic systems: model development and case study. Front. Earth Sci. 7(2), 169–181 (2013). https://doi.org/10.1007/s11707-012-0349-4

    Article  Google Scholar 

  37. Ismail, Y.: Industrial symbiosis at supply chain. Int. J. Bus. Econ Law 4(1). ISSN: 2289-1552 (2014)

    Google Scholar 

  38. Lütje, A., Willenbacher, M., Möller, A., Wohlgemuth, V.: Enabling the Identification of Industrial Symbiosis (IS) through Information Communication Technology (ICT). In: Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS), pp. 709–719 (2019). ISBN: 978-0-9981331-2-6. http://hdl.handle.net/10125/59511

  39. Sakr, D., El-Haggar, S., Huisingh, D.: Critical success and limiting factors for eco-industrial parks: global trends and Egyptian context. J. Clean. Prod. 19, 1158–1169 (2011). https://doi.org/10.1016/j.jclepro.2011.01.001

    Article  Google Scholar 

  40. Grant, G.B., Saeger, T.P., Massard, G., Nies, L.: Information and communication technology for industrial symbiosis. J. Ind. Ecol. 14(5), 740–753 (2010)

    Article  Google Scholar 

  41. Raabe, B., Low, J.S.C., Juraschek, M., Herrmann, C., Tjandra, T.B., Ng, Y.T., Kurle, D., Cerdas, F., Lueckenga, J., Yeo, Z., Tan, Y.S.: Collaboration platform for enabling industrial symbiosis: application of the by-product exchange network model. In: Procedia Conference on Life Cycle Engineering CIRP, vol. 61, pp. 263–268 (2017)

    Google Scholar 

  42. Isenmann, R.: Beitrag betrieblicher Umweltinformatik für die Industrial Ecology—Analyse von BUIS-Software-Werkzeugen zur Unterstützung von Industriesymbiosen. In: Gómez, J.M., Lang, C., Wohlgemuth, V. (eds.), IT-gestütztes Ressourcen- und Energiemanagement. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-35030-6_37

  43. Maqbool, A.S., Mendez Alva, F., Van Eetvelde, G.: An assessment of european information technology tools to support industrial symbiosis. Sustainability 11(131) (2019). https://doi.org/10.3390/su11010131

  44. Yazdanpanah, V., Yazan, M., Zijm, H.: Industrial symbiotic networks as coordinated games. In: Dastani, M., Sukthankar, G., André, E., Koenig, S. (eds.) Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018), Stockholm, Sweden (2018)

    Google Scholar 

  45. Yazan, D.M., Fraccascia, L.: Sustainable operations of industrial symbiosis: an enterprise input-output model integrated by agent-based simulation. Int. J. Prod. Res. (2019). https://doi.org/10.1080/00207543.2019.1590660

    Article  Google Scholar 

  46. Livet, P., Phan, D., Sanders, L.: Why do we need ontology for agent-based models? Complex. Artif. Mark. 133–145 (2008)

    Google Scholar 

  47. Rand, W.: Machine learning meets agent-based modeling: when not to go to a bar (2006). https://ccl.northwestern.edu/papers/agent2006rand.pdf. Accessed 18 June 2019

  48. Van Der Hoog, S.: Deep learning in (and of) agent-based models: a prospectus (2017). Preprint arXiv:1706.06302. https://arxiv.org/pdf/1706.06302.pdf. Accessed 18 June 2019

Download references

Acknowledgements

This doctoral research work is co-financed by funds from the Berlin Equal Opportunities Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lütje .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lütje, A., Willenbacher, M., Engelmann, M., Kunisch, C., Wohlgemuth, V. (2020). Exploring the System Dynamics of Industrial Symbiosis (IS) with Machine Learning (ML) Techniques—A Framework for a Hybrid-Approach. In: Schaldach, R., Simon, KH., Weismüller, J., Wohlgemuth, V. (eds) Advances and New Trends in Environmental Informatics. Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-030-30862-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30862-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30861-2

  • Online ISBN: 978-3-030-30862-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics