Skip to main content

The Pyrolysis of Waste Biomass Investigated by Simultaneous TGA-DTA-MS Measurements and Kinetic Modeling with Deconvolution Functions

  • Conference paper
  • First Online:
Computational and Experimental Approaches in Materials Science and Engineering (CNNTech 2018)

Abstract

As waste biomass from fruit processing industry, apricot kernel shells have a potential for conversion to renewable energy through a thermo-chemical process such as pyrolysis. However, due to major differences of biomass characteristics as the well-known issue, it is extremely important to perform detailed analysis of biomass samples from the same type (or same species) but from different geographical regions. Regarding full characterization of considered biomass material and to facilitate further process development, in this paper, the advanced mathematical model for kinetic analysis was used. All performed kinetic modeling represents the process kinetics developed and validated on thermal decomposition studies using simultaneous thermogravimetric analysis (TGA) – differential thermal analysis (DTA) – mass spectrometry (MS) scanning, at four heating rates of 5, 10, 15 and 20 °C min−1, over temperature range 30–900 °C and under an argon (Ar) atmosphere. Model-free analysis for base prediction of decomposition process and deconvolution approach by Fraser-Suzuki functions were utilized for determination of effective activation energies (E), pre-exponential factors (A) and fractional contributions (φ), as well as for separation of overlapping reactions. Comparative study of kinetic results with emission analysis of evolved gas species was also implemented in order to determine the more comprehensive pyrolysis kinetics model. Obtained results strongly indicated that the Fraser-Suzuki deconvolution provides excellent quality of fits with experimental ones, and could be employed to predict devolatilization rates with a high probability. From energy compensation effect properties, it was revealed the existence of unconventional thermal lag due to heat demand by chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dodić, S.N., Popov, S.D., Dodić, J.M., Ranković, J.A., Zavargo, Z.Z., Golušin, M.T.: An overview of biomass energy utilization in Vojvodina. Renew. Sustain. Energy Rev. 14(1), 550–553 (2010)

    Article  Google Scholar 

  2. Antal, M.J.: Biomass pyrolysis: a review of the literature Part 1—carbohydrate pyrolysis. In: Böer, K.W., Duffie, J.A. (eds.) Advances in Solar Energy, pp. 61–111. Springer, New York (1983)

    Chapter  Google Scholar 

  3. Al Arni, S.: Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 124, 197–201 (2018)

    Article  Google Scholar 

  4. Waheed, Q.M.K., Nahil, M.A., Williams, P.T.: Pyrolysis of waste biomass: investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition. J. Energy Inst. 86(4), 233–241 (2013)

    Article  Google Scholar 

  5. Janković, B., Dodevski, V.: The combustion performances and thermo-oxidative degradation kinetics of plane tree seeds (PTS) (Platanus orientalis L.). Energy 154, 308–318 (2018)

    Article  Google Scholar 

  6. Diebold, J., Power, A.: Engineering aspects of the vortex pyrolysis reactor to produce primary pyrolysis oil vapors for use in resins and adhesives. In: Bridgwater, A.V., Kuester, J.L. (eds.) Research in Thermochemical Biomass Conversion, pp. 609–628. Springer, Dordrecht (1988)

    Chapter  Google Scholar 

  7. Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006)

    Article  Google Scholar 

  8. Demiral, İ., Kul, Ş.Ç.: Pyrolysis of apricot kernel shell in a fixed-bed reactor: characterization of bio-oil and char. J. Anal. Appl. Pyrolysis 107, 17–24 (2014)

    Article  Google Scholar 

  9. Abbas, M., Aksil, T.: Adsorption of malachite green (MG) onto apricot stone activated Carbon (ASAC)-Equilibrium, kinetic and thermodynamic studies (2017)

    Google Scholar 

  10. Taghizadeh-Alisaraei, A., Assar, H.A., Ghobadian, B., Motevali, A.: Potential of biofuel production from pistachio waste in Iran. Renew. Sustain. Energy Rev. 72, 510–522 (2017)

    Article  Google Scholar 

  11. Şentorun-Shalaby, Çd., Uçak-Astarlıogˇlu, M.G., Artok, L., Sarıcı, Ç.: Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Microporous Mesoporous Mater. 88(1–3), 126–134 (2006)

    Article  Google Scholar 

  12. Friedman, H.L.: Kinetics of thermal degradation of char-forming plastics from thermogravimetry: Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 6, 183–195 (1964)

    Article  Google Scholar 

  13. Berčič, G.: The universality of Friedman’s isoconversional analysis results in a model-less prediction of thermodegradation profiles. Thermochim. Acta 650, 1–7 (2017)

    Article  Google Scholar 

  14. Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    Article  Google Scholar 

  15. Akahira, T., Sunose, T.: Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. (Sci Technol) 16, 22–31 (1971)

    Google Scholar 

  16. Ozawa, T.: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn 38(11), 1881–1886 (1965)

    Article  Google Scholar 

  17. Janković, B., Manić, N., Stojiljković, D., Jovanović, V.: TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches. Fuel 234, 447–463 (2018)

    Article  Google Scholar 

  18. Wang, X., Hu, M., Hu, W., Chen, Z., Liu, S., Hu, Z., et al.: Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour. Technol. 219, 510–520 (2016)

    Article  Google Scholar 

  19. Li, J., Qiao, Y., Zong, P., Wang, C., Tian, Y., Qin, S.: Thermogravimetric analysis and isoconversional kinetic study of biomass pyrolysis derived from land, coastal zone and marine. Energy Fuels 33, 3299–3310 (2019)

    Article  Google Scholar 

  20. Oladokun, O., Ahmad, A., Abdullah, T.A.T., Nyakuma, B.B., Bello, A.A.-H., Al-Shatri, A.H.: Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica. Appl. Therm. Eng. 105, 931–940 (2016)

    Article  Google Scholar 

  21. Cheng, Z., Wu, W., Ji, P., Zhou, X., Liu, R., Cai, J.: Applicability of Fraser-Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes. J. Therm. Anal. Calorim. 119(2), 1429–1438 (2015)

    Article  Google Scholar 

  22. Perejón, A., Sánchez-Jiménez, P.E., Criado, J.M., Pérez-Maqueda, L.A.: Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J. Phys. Chem. B 115(8), 1780–1791 (2011)

    Article  Google Scholar 

  23. Hu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., et al.: Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method. Energy Convers. Manage. 118, 1–11 (2016)

    Article  Google Scholar 

  24. Özyuğuran, A., Yaman, S.: Prediction of calorific value of biomass from proximate analysis. Energy Procedia 107, 130–136 (2017)

    Article  Google Scholar 

  25. Arvelakis, S., Gehrmann, H., Beckmann, M., Koukios, E.: Preliminary results on the ash behavior of peach stones during fluidized bed gasification: evaluation of fractionation and leaching as pre-treatments. Biomass Bioenergy 28(3), 331–338 (2005)

    Article  Google Scholar 

  26. Manić, N., Janković, B., Stojiljković, D., Jovanović, V.: TGA-DSC-MS analysis of pyrolysis process of various biomasses with isoconversional (model-free) kinetics. In: Mitrovic, N., Milosevic, M., Mladenovic, G. (eds.) Experimental and Numerical Investigations in Materials Science and Engineering, pp. 16–33. Springer, Cham (2019)

    Chapter  Google Scholar 

  27. Trninić, M., Todorović, D., Jovović, A., Stojiljković, D., Skreiberg, Ø., Wang, L., Manić, N.: Mathematical modelling and performance analysis of a small-scale combined heat and power system based on biomass waste downdraft gasification. In: Mitrovic, N., Milosevic, M., Mladenovic, G. (eds.) Experimental and Numerical Investigations in Materials Science and Engineering, pp. 159–173. Springer, Cham (2019)

    Chapter  Google Scholar 

  28. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13), 1781–1788 (2007)

    Article  Google Scholar 

  29. Gašparovič, L., Koreňová, Z., Jelemenský, Ľ.: Kinetic study of wood chips decomposition by TGA. Chem. Pap. 64(2), 174–181 (2010)

    Article  Google Scholar 

  30. Zapata, B., Balmaseda, J., Fregoso-Israel, E., Torres-García, E.: Thermo-kinetics study of orange peel in air. J. Therm. Anal. Calorim. 98(1), 309–315 (2009)

    Article  Google Scholar 

  31. Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., Niandou, M.A.S.: Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 174(2), 105–112 (2009)

    Article  Google Scholar 

  32. Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A., Sonoki, T.: Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11(23), 6613–6621 (2014)

    Article  Google Scholar 

  33. Wang, T., Yin, J., Liu, Y., Lu, Q., Zheng, Z.: Effects of chemical inhomogeneity on pyrolysis behaviors of corn stalk fractions. Fuel 129, 111–115 (2014)

    Article  Google Scholar 

  34. Janković, B., Manić, N., Dodevski, V., Popović, J., Rusmirović, J.D., Tošić, M.: Characterization analysis of Poplar fluff pyrolysis products. Multi-component kinetic study. Fuel 238, 111–128 (2019)

    Article  Google Scholar 

  35. Broido, A., Nelson, M.A.: Char yield on pyrolysis of cellulose. Combust. Flame 24, 263–268 (1975)

    Article  Google Scholar 

  36. Radojević, M., Janković, B., Jovanović, V., Stojiljković, D., Manić, N.: Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLoS ONE 13(10), e0206657 (2018)

    Article  Google Scholar 

  37. Aljoumaa, K., Tabeikh, H., Abboudi, M.: Characterization of apricot kernel shells (Prunus armeniaca) by FTIR spectroscopy, DSC and TGA. J. Indian Acad. Wood Sci. 14(2), 127–132 (2017)

    Article  Google Scholar 

  38. Parmon, V.N.: Kinetic compensation effects: a long term mystery and the reality. A simple kinetic consideration. React. Kinet. Mech. Catal. 118(1), 165–178 (2016)

    Article  Google Scholar 

  39. Budrugeac, P.: On the pseudo compensation effect due to the complexity of the mechanism of thermal degradation of polymeric materials. Polym. Degrad. Stab. 58(1–2), 69–76 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge financial support of Ministry of Education, Science and Technological Development of the Republic of Serbia under the Projects III42010, 172015 and III45005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojša Manic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manic, N., Jankovic, B., Dodevski, V., Stojiljkovic, D., Jovanovic, V. (2020). The Pyrolysis of Waste Biomass Investigated by Simultaneous TGA-DTA-MS Measurements and Kinetic Modeling with Deconvolution Functions. In: Mitrovic, N., Milosevic, M., Mladenovic, G. (eds) Computational and Experimental Approaches in Materials Science and Engineering. CNNTech 2018. Lecture Notes in Networks and Systems, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-030-30853-7_3

Download citation

Publish with us

Policies and ethics