Skip to main content

Prognostic Value of Innate and Adaptive Immunity in Cancers

  • Chapter
  • First Online:
  • 1956 Accesses

Abstract

Cancer remains one of the most complex diseases affecting humans and, despite the impressive advances that have been made in molecular and cell biology, how cancer cells progress and acquire their metastatic ability still remains debated. Tumors are heterogeneous cellular systems whose growth depends on dynamical interactions among the cancer cells, and between cells and the constantly changing microenvironment. Several types of immune cells, including cells of both the innate and adaptive immune system, are comprised in the microenvironment of human cancers. While chronic inflammation is considered as one of the hallmarks of cancer being associated to increased risk of tumor development and progression, the clinical relevance of innate and adaptive cellular components of the immune system is still today less clear. A relevant issue is to unravel the discrepancy between the inhibitory effects on cancer growth exerted by the local immune response and the promoting effects on cancer proliferation, invasion, and dissemination induced by some types of inflammatory cells. Here, we discuss the actual knowledge on the role played by innate and adaptive immune system in the local progression and metastasis of human cancer of unrelated histological origin and the prognostic information that we can currently understand and exploit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grizzi F, Di Ieva A, Russo C, Frezza EE, Cobos E, Muzzio PC, et al. Cancer initiation and progression: an unsimplifiable complexity. Theor Biol Med Model. 2006;3:37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Enderling H, Hahnfeldt P, Hlatky L, Almog N. Systems biology of tumor dormancy: linking biology and mathematics on multiple scales to improve cancer therapy. Cancer Res. 2012;72(9):2172–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deisboeck TS, Wang Z, Macklin P, Cristini V. Multiscale cancer modeling. Annu Rev Biomed Eng. 2011;13:127–55.

    Article  CAS  PubMed  Google Scholar 

  4. Chakrabarti A, Verbridge S, Stroock AD, Fischbach C, Varner JD. Multiscale models of breast cancer progression. Ann Biomed Eng. 2012;40(11):2488–500.

    Article  PubMed  Google Scholar 

  5. Anderson AR, Quaranta V. Integrative mathematical oncology. Nat Rev Cancer. 2008;8(3):227–34.

    Article  CAS  PubMed  Google Scholar 

  6. Brenner S. Biological computation. Novartis Found Symp. 1998;213:106–11. discussion 11-6.

    CAS  PubMed  Google Scholar 

  7. Taddei ML, Giannoni E, Comito G, Chiarugi P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett. 2013;341(1):80–96.

    Article  CAS  PubMed  Google Scholar 

  8. Grizzi F, Chiriva-Internati M. Cancer: looking for simplicity and finding complexity. Cancer Cell Int. 2006;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang E, Zou J, Zaman N, Beitel LK, Trifiro M, Paliouras M. Cancer systems biology in the genome sequencing era: part 2. Evolutionary dynamics of tumor clonal networks and drug resistance. Semin Cancer Biol. 2013;23(4):286–92.

    Article  CAS  PubMed  Google Scholar 

  10. Laitala A, Erler JT. Hypoxic signalling in tumour stroma. Front Oncol. 2018;8:189.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sigston EAW, Williams BRG. An emergence framework of carcinogenesis. Front Oncol. 2017;7:198.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Salgia R, Mambetsariev I, Hewelt B, Achuthan S, Li H, Poroyko V, et al. Modeling small cell lung cancer (SCLC) biology through deterministic and stochastic mathematical models. Oncotarget. 2018;9(40):26226–42.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jupp PW. A complex systems approach to cancer prevention. Med Hypotheses. 2018;112:18–23.

    Article  CAS  PubMed  Google Scholar 

  14. Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 2013;8:277–302.

    Article  CAS  PubMed  Google Scholar 

  15. Arrieta VA, Cacho-Diaz B, Zhao J, Rabadan R, Chen L, Sonabend AM. The possibility of cancer immune editing in gliomas. A critical review. Oncoimmunology. 2018;7(7):e1445458.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brabek J, Mierke CT, Rosel D, Vesely P, Fabry B. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun Signal. 2010;8:22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schiavoni G, Gabriele L, Mattei F. The tumor microenvironment: a pitch for multiple players. Front Oncol. 2013;3:90.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marsh T, Pietras K, McAllister SS. Fibroblasts as architects of cancer pathogenesis. Biochim Biophys Acta. 2013;1832(7):1070–8.

    Article  CAS  PubMed  Google Scholar 

  19. Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2012;2(10):881–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sundaram GM, Quah S, Sampath P. Cancer: the dark side of wound healing. FEBS J. 2018;285(24):4516–34.

    Article  CAS  PubMed  Google Scholar 

  21. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Foucher ED, Ghigo C, Chouaib S, Galon J, Iovanna J, Olive D. Pancreatic ductal adenocarcinoma: a strong imbalance of good and bad immunological cops in the tumor microenvironment. Front Immunol. 2018;9:1044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  24. Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol. 2018;2(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci. 2013;1284:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murthy V, Minehart J, Sterman DH. Local immunotherapy of cancer: innovative approaches to harnessing tumor-specific immune responses. J Natl Cancer Inst. 2017;109(12):djx097.

    Article  CAS  Google Scholar 

  27. Candido J, Hagemann T. Cancer-related inflammation. J Clin Immunol. 2013;33(Suppl 1):S79–84.

    Article  PubMed  CAS  Google Scholar 

  28. Fridman WH, Dieu-Nosjean MC, Pages F, Cremer I, Damotte D, Sautes-Fridman C, et al. The immune microenvironment of human tumors: general significance and clinical impact. Cancer Microenviron. 2012;6(2):117–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mlecnik B, Bindea G, Pages F, Galon J. Tumor immunosurveillance in human cancers. Cancer Metastasis Rev. 2011;30(1):5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pham LV, Pogue E, Ford RJ. The role of macrophage/B-cell interactions in the pathophysiology of B-cell lymphomas. Front Oncol. 2018;8:147.

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 2013;23(3):277–86.

    Article  PubMed  CAS  Google Scholar 

  32. Lee HW, Choi HJ, Ha SJ, Lee KT, Kwon YG. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochim Biophys Acta. 2013;1835(2):170–9.

    CAS  PubMed  Google Scholar 

  33. Li H, Jiang T, Li MQ, Zheng XL, Zhao GJ. Transcriptional regulation of macrophages polarization by MicroRNAs. Front Immunol. 2018;9:1175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. de Groot AE, Pienta KJ. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget. 2018;9(29):20908–27.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Khaled YS, Ammori BJ, Elkord E. Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol Cell Biol. 2013;91(8):493–502.

    Article  CAS  PubMed  Google Scholar 

  36. Taverna G, Giusti G, Seveso M, Hurle R, Colombo P, Stifter S, et al. Mast cells as a potential prognostic marker in prostate cancer. Dis Markers. 2013;35(6):711–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tazzyman S, Niaz H, Murdoch C. Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Semin Cancer Biol. 2013;23(3):149–58.

    Article  CAS  PubMed  Google Scholar 

  38. Galdiero MR, Bianchi P, Grizzi F, Di Caro G, Basso G, Ponzetta A, et al. Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. Int J Cancer. 2016;139(2):446–56.

    Article  CAS  PubMed  Google Scholar 

  39. Shurin GV, Ma Y, Shurin MR. Immunosuppressive mechanisms of regulatory dendritic cells in cancer. Cancer Microenviron. 2013;6(2):159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shey MS, Balfour A, Wilkinson KA, Meintjes G. Contribution of APCs to mucosal-associated invariant T-cell activation in infectious disease and cancer. Innate Immun. 2018;24(4):192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bandola-Simon J, Roche PA. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol. 2018;113:31–7. https://doi.org/10.1016/j.molimm.2018.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crome SQ, Lang PA, Lang KS, Ohashi PS. Natural killer cells regulate diverse T-cell responses. Trends Immunol. 2013;34(7):342–9.

    Article  CAS  PubMed  Google Scholar 

  43. Min-Oo G, Kamimura Y, Hendricks DW, Nabekura T, Lanier LL. Natural killer cells: walking three paths down memory lane. Trends Immunol. 2013;34(6):251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29(8):1093–102.

    Article  CAS  PubMed  Google Scholar 

  45. Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, et al. International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391(10135):2128–39.

    Article  PubMed  Google Scholar 

  46. Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T-cell subsets, migration patterns, and tissue residence. Annu Rev Immunol. 2013;31:137–61.

    Article  CAS  PubMed  Google Scholar 

  47. Veeranki S. Role of inflammasomes and their regulators in prostate cancer initiation, progression and metastasis. Cell Mol Biol Lett. 2013;18(3):355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang X, Shapiro DJ. The immune system and inflammation in breast cancer. Mol Cell Endocrinol. 2013;382(1):673–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sun B, Karin M. Inflammation and liver tumorigenesis. Front Med. 2013;7(2):242–54.

    Article  PubMed  Google Scholar 

  50. Maccio A, Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58(2):133–47.

    Article  CAS  PubMed  Google Scholar 

  51. Neurath MF, Finotto S. The emerging role of T-cell cytokines in non-small cell lung cancer. Cytokine Growth Factor Rev. 2012;23(6):315–22.

    Article  CAS  PubMed  Google Scholar 

  52. Milara J, Cortijo J. Tobacco, inflammation, and respiratory tract cancer. Curr Pharm Des. 2012;18(26):3901–38.

    Article  CAS  PubMed  Google Scholar 

  53. Dunn JH, Ellis LZ, Fujita M. Inflammasomes as molecular mediators of inflammation and cancer: potential role in melanoma. Cancer Lett. 2012;314(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  54. Saito K, Kihara K. Role of C-reactive protein in urological cancers: a useful biomarker for predicting outcomes. Int J Urol. 2013;20(2):161–71.

    Article  CAS  PubMed  Google Scholar 

  55. Baxevanis CN, Papamichail M, Perez SA. Immune classification of colorectal cancer patients: impressive but how complete? Expert Opin Biol Ther. 2013;13(4):517–26.

    Article  CAS  PubMed  Google Scholar 

  56. Fung KY, Nguyen PM, Putoczki T. The expanding role of innate lymphoid cells and their T-cell counterparts in gastrointestinal cancers. Mol Immunol. 2017;110:48–56.

    Article  PubMed  CAS  Google Scholar 

  57. Gunderson AJ, Coussens LM. B-cells and their mediators as targets for therapy in solid tumors. Exp Cell Res. 2013;319(11):1644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nelson BH. CD20+ B-cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185(9):4977–82.

    Article  CAS  PubMed  Google Scholar 

  59. Mantovani A, Romero P, Palucka AK, Marincola FM. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet. 2008;371(9614):771–83.

    Article  CAS  PubMed  Google Scholar 

  60. Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248(3):171–83.

    Article  CAS  PubMed  Google Scholar 

  61. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–44.

    Article  CAS  PubMed  Google Scholar 

  62. Albini A, Bruno A, Noonan DM, Mortara L. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol. 2018;9:527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Qu X, Tang Y, Hua S. Immunological approaches towards cancer and inflammation: a cross talk. Front Immunol. 2018;9:563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today. 1992;13(7):265–70.

    Article  CAS  PubMed  Google Scholar 

  65. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Malesci A, Bianchi P, Celesti G, Basso G, Marchesi F, Grizzi F, et al. Tumor-associated macrophages and response to 5-fluorouracil adjuvant therapy in stage III colorectal cancer. Oncoimmunology. 2017;6(12):e1342918.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Grizzi F, Basso G, Borroni EM, Cavalleri T, Bianchi P, Stifter S, et al. Evolving notions on immune response in colorectal cancer and their implications for biomarker development. Inflamm Res. 2018;67(5):375–89.

    Article  CAS  PubMed  Google Scholar 

  68. Porta C, Ippolito A, Consonni FM, Carraro L, Celesti G, Correale C, et al. Protumor steering of cancer inflammation by p50 NF-kappaB enhances colorectal cancer progression. Cancer Immunol Res. 2018;6(5):578–93.

    Article  CAS  PubMed  Google Scholar 

  69. Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138(6):2101–14 e5.

    Article  CAS  PubMed  Google Scholar 

  70. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  71. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science (New York, NY). 2011;331(6024):1612–6.

    Article  CAS  Google Scholar 

  72. Mantovani A, Germano G, Marchesi F, Locatelli M, Biswas SK. Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur J Immunol. 2011;41(9):2522–5.

    Article  CAS  PubMed  Google Scholar 

  73. Allavena P, Sica A, Garlanda C, Mantovani A. The yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222:155–61.

    Article  CAS  PubMed  Google Scholar 

  74. Bottazzi B, Polentarutti N, Acero R, Balsari A, Boraschi D, Ghezzi P, et al. Regulation of the macrophage content of neoplasms by chemoattractants. Science (New York, NY). 1983;220(4593):210–2.

    Article  CAS  Google Scholar 

  75. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 2006;107(5):2112–22.

    Article  CAS  PubMed  Google Scholar 

  76. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185(1):642–52.

    Article  CAS  PubMed  Google Scholar 

  77. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

    Article  CAS  PubMed  Google Scholar 

  78. Verollet C, Charriere GM, Labrousse A, Cougoule C, Le Cabec V, Maridonneau-Parini I. Extracellular proteolysis in macrophage migration: losing grip for a breakthrough. Eur J Immunol. 2011;41(10):2805–13.

    Article  CAS  PubMed  Google Scholar 

  79. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.

    Article  CAS  PubMed  Google Scholar 

  80. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31.

    Article  CAS  PubMed  Google Scholar 

  81. Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, et al. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Investig. 2013;93(7):844–54.

    Article  CAS  PubMed  Google Scholar 

  82. Leifler KS, Svensson S, Abrahamsson A, Bendrik C, Robertson J, Gauldie J, et al. Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. J Immunol. 2013;190(8):4420–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mantovani A, Bar Shavit Z, Peri G, Polentarutti N, Bordignon C, Sessa C, et al. Natural cytotoxicity on tumour cells of human macrophages obtained from diverse anatomical sites. Clin Exp Immunol. 1980;39(3):776–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mantovani A, Allavena P, Sessa C, Bolis G, Mangioni C. Natural killer activity of lymphoid cells isolated from human ascitic ovarian tumors. Int J Cancer. 1980;25(5):573–82.

    Article  CAS  PubMed  Google Scholar 

  85. Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res. 2007;13(5):1472–9.

    Article  CAS  PubMed  Google Scholar 

  86. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 2012;228(7):1404–12.

    Article  CAS  Google Scholar 

  87. Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C, Mantovani A. Neutrophils in innate and adaptive immunity. Semin Immunopathol. 2013;35(4):377–94.

    Article  CAS  PubMed  Google Scholar 

  88. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519–31.

    Article  CAS  PubMed  Google Scholar 

  89. Mantovani A. The yin-yang of tumor-associated neutrophils. Cancer Cell. 2009;16(3):173–4.

    Article  CAS  PubMed  Google Scholar 

  90. Fridlender ZG, Albelda SM. Tumor-associated neutrophils: friend or foe? Carcinogenesis. 2012;33(5):949–55.

    Article  CAS  PubMed  Google Scholar 

  91. Shaul ME, Fridlender ZG. Cancer related circulating and tumor-associated neutrophils - subtypes, sources and function. FEBS J. 2018;285(23):4316–42.

    Article  CAS  PubMed  Google Scholar 

  92. Deniset JF, Kubes P. Neutrophil heterogeneity: Bona fide subsets or polarization states? J Leukoc Biol. 2018;103(5):829–38.

    Article  CAS  PubMed  Google Scholar 

  93. Titu LV, Monson JR, Greenman J. The role of CD8(+) T-cells in immune responses to colorectal cancer. Cancer Immunol Immunother. 2002;51(5):235–47.

    Article  CAS  PubMed  Google Scholar 

  94. Dalerba P, Maccalli C, Casati C, Castelli C, Parmiani G. Immunology and immunotherapy of colorectal cancer. Crit Rev Oncol Hematol. 2003;46(1):33–57.

    Article  PubMed  Google Scholar 

  95. Shunyakov L, Ryan CK, Sahasrabudhe DM, Khorana AA. The influence of host response on colorectal cancer prognosis. Clin Colorectal Cancer. 2004;4(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  96. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  97. Zou W. Regulatory T-cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295–307.

    Article  CAS  PubMed  Google Scholar 

  98. Hori S, Nomura T, Sakaguchi S. Control of regulatory T-cell development by the transcription factor Foxp3. Science (New York, NY). 2003;299(5609):1057–61.

    Article  CAS  Google Scholar 

  99. Shevach EM. Foxp3(+) T regulatory cells: still many unanswered questions-a perspective after 20 years of study. Front Immunol. 2018;9:1048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Whiteside TL. What are regulatory T-cells (Treg) regulating in cancer and why? Semin Cancer Biol. 2012;22(4):327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 2006;6(3):205–17.

    Article  CAS  PubMed  Google Scholar 

  102. Carragher DM, Rangel-Moreno J, Randall TD. Ectopic lymphoid tissues and local immunity. Semin Immunol. 2008;20(1):26–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008;26(27):4410–7.

    Article  CAS  PubMed  Google Scholar 

  104. Bergomas F, Grizzi F, Doni A, Pesce S, Laghi L, Allavena P, et al. Tertiary intratumor lymphoid tissue in colorectal cancer. Cancer. 2012;4(1):1–10.

    Google Scholar 

  105. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (New York, NY). 2006;313(5795):1960–4.

    Article  CAS  Google Scholar 

  106. Laghi L, Bianchi P, Miranda E, Balladore E, Pacetti V, Grizzi F, et al. CD3+ cells at the invasive margin of deeply invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study. Lancet Oncol. 2009;10(9):877–84.

    Article  CAS  PubMed  Google Scholar 

  107. Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, et al. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 2007;67(1):354–61.

    Article  CAS  PubMed  Google Scholar 

  108. Taylor RC, Patel A, Panageas KS, Busam KJ, Brady MS. Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma. J Clin Oncol. 2007;25(7):869–75.

    Article  PubMed  Google Scholar 

  109. Mantovani A. Cancer: Inflaming metastasis. Nature. 2009;457(7225):36–7.

    Article  CAS  PubMed  Google Scholar 

  110. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108(4):914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Soo RA, Chen Z, Yan Teng RS, Tan HL, Iacopetta B, Tai BC, et al. Prognostic significance of immune cells in non-small cell lung cancer: meta-analysis. Oncotarget. 2018;9(37):24801–20.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zeni E, Mazzetti L, Miotto D, Lo Cascio N, Maestrelli P, Querzoli P, et al. Macrophage expression of interleukin-10 is a prognostic factor in nonsmall cell lung cancer. Eur Respir J. 2007;30(4):627–32.

    Article  CAS  PubMed  Google Scholar 

  114. Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P. Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J. 2009;33(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  115. Zhou Q, Peng RQ, Wu XJ, Xia Q, Hou JH, Ding Y, et al. The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J Transl Med. 2010;8:13.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Edin S, Wikberg ML, Dahlin AM, Rutegard J, Oberg A, Oldenborg PA, et al. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One. 2012;7(10):e47045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wu SQ, Xu R, Li XF, Zhao XK, Qian BZ. Prognostic roles of tumor associated macrophages in bladder cancer: a system review and meta-analysis. Oncotarget. 2018;9(38):25294–303.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Faure-Dupuy S, Durantel D, Lucifora J. Liver macrophages: friend or foe during hepatitis B infection? Liver Int. 2018;38(10):1718–29.

    Article  PubMed  Google Scholar 

  119. Clark WH Jr, Elder DE, Guerry D, Braitman LE, Trock BJ, Schultz D, et al. Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst. 1989;81(24):1893–904.

    Article  PubMed  Google Scholar 

  120. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T-cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    Article  CAS  PubMed  Google Scholar 

  121. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, et al. CD8+ T-cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58(16):3491–4.

    CAS  PubMed  Google Scholar 

  122. Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010;222(4):350–66.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  124. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29(6):610–8.

    Article  PubMed  Google Scholar 

  125. Koch M, Beckhove P, Op den Winkel J, Autenrieth D, Wagner P, Nummer D, et al. Tumor infiltrating T lymphocytes in colorectal cancer: tumor-selective activation and cytotoxic activity in situ. Ann Surg. 2006;244(6):986–92. Discussion 92–3.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Atreya I, Schimanski CC, Becker C, Wirtz S, Dornhoff H, Schnurer E, et al. The T-box transcription factor eomesodermin controls CD8 T-cell activity and lymph node metastasis in human colorectal cancer. Gut. 2007;56(11):1572–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T-cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.

    Article  CAS  PubMed  Google Scholar 

  128. Sasaki A, Tanaka F, Mimori K, Inoue H, Kai S, Shibata K, et al. Prognostic value of tumor-infiltrating FOXP3+ regulatory T-cells in patients with hepatocellular carcinoma. Eur J Surg Oncol. 2008;34(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  129. Siddiqui SA, Frigola X, Bonne-Annee S, Mercader M, Kuntz SM, Krambeck AE, et al. Tumor-infiltrating Foxp3-CD4+CD25+ T-cells predict poor survival in renal cell carcinoma. Clin Cancer Res. 2007;13(7):2075–81.

    Article  CAS  PubMed  Google Scholar 

  130. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Lee AH, Ellis IO, et al. An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat. 2011;127(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  131. Frey DM, Droeser RA, Viehl CT, Zlobec I, Lugli A, Zingg U, et al. High frequency of tumor-infiltrating FOXP3(+) regulatory T-cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer. 2010;126(11):2635–43.

    CAS  PubMed  Google Scholar 

  132. Salama P, Stewart C, Forrest C, Platell C, Iacopetta B. FOXP3+ cell density in lymphoid follicles from histologically normal mucosa is a strong prognostic factor in early stage colon cancer. Cancer Immunol Immunother. 2012;61(8):1183–90.

    Article  CAS  PubMed  Google Scholar 

  133. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27(2):186–92.

    Article  PubMed  Google Scholar 

  134. Saggar JK, Yu M, Tan Q, Tannock IF. The tumor microenvironment and strategies to improve drug distribution. Front Oncol. 2013;3:154.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Young EW. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol. 2013;5(9):1096–109.

    Article  CAS  Google Scholar 

  136. Kazmierczak W, Dutsch-Wicherek M. Creation of a suppressive microenvironment by macrophages and cancer-associated fibroblasts. Front Biosci. 2013;18:1003–16.

    Article  Google Scholar 

  137. Quante M, Varga J, Wang TC, Greten FR. The gastrointestinal tumor microenvironment. Gastroenterology. 2013;145(1):63–78.

    Article  PubMed  Google Scholar 

  138. Polanska UM, Orimo A. Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol. 2013;228(8):1651–7.

    Article  CAS  PubMed  Google Scholar 

  139. Zigler M, Shir A, Levitzki A. Targeted cancer immunotherapy. Curr Opin Pharmacol. 2013;13(4):504–10.

    Article  CAS  PubMed  Google Scholar 

  140. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, et al. Cancer classification using the Immunoscore: a worldwide task force. J Transl Med. 2012;10:205.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ascierto PA, Capone M, Urba WJ, Bifulco CB, Botti G, Lugli A, et al. The additional facet of immunoscore: immunoprofiling as a possible predictive tool for cancer treatment. J Transl Med. 2013;11:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hamada T, Soong TR, Masugi Y, Kosumi K, Nowak JA, da Silva A, et al. TIME (tumor immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology. 2018;7(7):e1442999.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Grizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grizzi, F., Borroni, E.M., Yiu, D., Farina, F.M., Cananzi, F.C.M., Laghi, L. (2020). Prognostic Value of Innate and Adaptive Immunity in Cancers. In: Rezaei, N. (eds) Cancer Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-30845-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30845-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30844-5

  • Online ISBN: 978-3-030-30845-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics