Skip to main content

Nanoscale Thermal Transport in Low Dimensional Materials

  • Chapter
  • First Online:
  • 230 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Nanomaterials offer great promises of improved properties in the realisation of advanced technologies. Especially, nanostructured two dimensional (2D) and one dimensional (1D) materials exhibit interesting behaviour thanks to their low dimensionality. The exploration of heat transfer in such systems is therefore crucial for their application but requires nanoscale measurement capabilities. In this chapter, we used SThM to measure such properties of 2D and 1D systems. First, we report for the first time temperature dependent thermal conductivity of naturally occurring heterostructure franckeite and interface resistance of MoS\({}_2\) and graphene. Then, we directly measure thermal conductivity in vertically aligned carbon nanotubes structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Geim AK, Grigorieva IV (2013) Nature 499:419

    Article  Google Scholar 

  2. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL et al (2010) Nat Nanotechnol 5:722

    Google Scholar 

  3. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T et al (2011) Nano Lett 11:2396–2399

    Google Scholar 

  4. Tielrooij K-J, Hesp NC, Principi A, Lundeberg MB, Pogna EA, Banszerus L, Mics Z, Massicotte M, Schmidt P, Davydovskaya D et al (2018) Nat Nanotechnol 13:41

    Google Scholar 

  5. Molina-Mendoza AJ, Giovanelli E, Paz WS, Niño MA, Island JO, Evangeli C, Aballe L, Foerster M, Van Der Zant HS, Rubio-Bollinger G et al (2017) Nat Commun 8:14409

    Google Scholar 

  6. Velický M, Toth PS, Rakowski AM, Rooney AP, Kozikov A, Woods CR, Mishchenko A, Fumagalli L, Yin J, Zólyomi V et al (2017) Nat Commun 8:14410

    Google Scholar 

  7. Ray K, Yore AE, Mou T, Jha S, Smithe KK, Wang B, Pop E, Newaz A (2017) ACS Nano 11:6024–6030

    Article  Google Scholar 

  8. Bae M-H, Li Z, Aksamija Z, Martin PN, Xiong F, Ong Z-Y, Knezevic I, Pop E (2013) Nat Commun 4:1734

    Google Scholar 

  9. Jang W, Chen Z, Bao W, Lau CN, Dames C (2010) Nano Lett 10:3909–3913

    Google Scholar 

  10. Zhang J, Hong Y, Yue Y (2015) J Appl Phys 117:134307

    Google Scholar 

  11. Zhang Z, Xie Y, Peng Q, Chen Y (2015) Nanotechnology 26:375402

    Article  Google Scholar 

  12. Pizzocchero F, Gammelgaard L, Jessen BS, Caridad JM, Wang L, Hone J, Bøggild P, Booth TJ (2016) Nat Commun 7:11894

    Google Scholar 

  13. Zhang X, Sun D, Li Y, Lee G-H, Cui X, Chenet D, You Y, Heinz TF, Hone JC (2015) ACS Appl Mater Interfaces 7:25923–25929

    Google Scholar 

  14. Judek J, Gertych AP, Świniarski M, Łapińska A, Dużyńska A, Zdrojek M (2015) Sci Rep 5:12422

    Google Scholar 

  15. Yasaei P, Foss CJ, Karis K, Behranginia A, El-Ghandour AI, Fathizadeh A, Olivares J, Majee AK, Foster CD, Khalili-Araghi F et al (2017) Adv Mater Interfaces 4

    Google Scholar 

  16. Yalon E, Aslan ÖB, Smithe KK, McClellan CJ, Suryavanshi SV, Xiong F, Sood A, Neumann CM, Xu X, Goodson KE et al (2017) ACS Appl Mater Interfaces 9:43013–43020

    Google Scholar 

  17. Chen Z, Jang W, Bao W, Lau C, Dames C (2009) Appl Phys Lett 95:161910

    Google Scholar 

  18. Mak KF, Lui CH, Heinz TF (2010) Appl Phys Lett 97:221904

    Google Scholar 

  19. Kaur S, Raravikar N, Helms BA, Prasher R, Ogletree DF (2014) Nat Commun 5:3082

    Google Scholar 

  20. Xu J, Fisher TS (2006) Int J Heat Mass Transf 49:1658–1666

    Google Scholar 

  21. McNamara AJ, Joshi Y, Zhang ZM (2012) Int J Therm Sci 62:2–11

    Google Scholar 

  22. Ni Y, Le Khanh H, Chalopin Y, Bai J, Lebarny P, Divay L, Volz S (2012) Appl Phys Lett 100:193118

    Google Scholar 

  23. Robson AJ, Grishin I, Young RJ, Sanchez AM, Kolosov OV, Hayne M (2013) ACS Appl Mater Interfaces 5:3241–3245

    Google Scholar 

  24. Yang DJ, Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, Zhou Q, Wang Q, Li JQ (2002) Phys Rev B 66

    Google Scholar 

  25. Kim P, Shi L, Majumdar A, McEuen PL (2001) Phys Rev Lett 87:215502

    Google Scholar 

  26. Yu CH, Shi L, Yao Z, Li DY, Majumdar A (2005) Nano Lett 5:1842–1846

    Google Scholar 

  27. Kim K, Jeong W, Lee W, Reddy P (2012) ACS Nano 6:4248–4257

    Article  Google Scholar 

  28. Muzychka YS, Yovanovich MM, Culham JR (2004) J Thermophys Heat Transf 18:45–51

    Google Scholar 

  29. Gotsmann B, Lantz MA, Knoll A, Dürig U (2010) Nanotechnology 121–160

    Google Scholar 

  30. Fujii M, Zhang X, Xie HQ, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T (2005) Phys Rev Lett 95

    Google Scholar 

  31. Mingo N, Broido DA (2005) Phys Rev Lett 95:4

    Google Scholar 

  32. Siemens ME, Li Q, Yang R, Nelson KA, Anderson EH, Murnane MM, Kapteyn HC (2010) Nat Mater 9:26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Spièce .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spièce, J. (2019). Nanoscale Thermal Transport in Low Dimensional Materials. In: Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-30813-1_6

Download citation

Publish with us

Policies and ethics