Hwang, G.J.: Definition, framework and research issues of smart learning environments–a context-aware ubiquitous learning perspective. Smart Learn. Environ. 1(1), 4 (2014)
CrossRef
Google Scholar
Greany, K.: Adaptive learning: how to personalize your learning strategy (2018)
Google Scholar
Shelle, G., Earnesty, D., Pilkenton, A., Powell, E.: Adaptive learning: an innovative method for online teaching and learning. J. Extension 56 (2018)
Google Scholar
Molina-Carmona, R., Villagrá-Arnedo, C.: Smart learning. In: Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality—TEEM’18, pp. 645–647. ACM Press, Salamanca, Spain (2018)
Google Scholar
Real-Fernández, A., Molina-Carmona, R., Llorens-Largo, F.: Aprendizaje adaptativo basado en competencias y actividades–(Adaptive learning based on competences and activities). La innovación docente como misión del profesorado : Congreso Internacional Sobre Aprendizaje. Innovación y Competitividad, pp. 1–6. Servicio de Publicaciones Universidad, Zaragoza, Spain (2017)
Google Scholar
Real-Fernández, A., Molina-Carmona, R., Llorens-Largo, F.: Smart system based on adaptive learning itineraries. In: Poster Presentation in the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality—TEEM’18, pp. 654–659. ACM Press, Salamanca, Spain (2018)
Google Scholar
Ahn, S., Ames, A.J., Myers, N.D.: A review of meta-analyses in education: methodological strengths and weaknesses. Rev. Educ. Res. 82(4), 436–476 (2012)
CrossRef
Google Scholar
Hattie, J.: Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to Achievement. Edición, 1 edn. Routledge, London; New York (2008)
CrossRef
Google Scholar
Hattie, J.: Visible Learning for Teachers: Maximizing Impact on Learning. Routledge (2013)
Google Scholar
Hattie, J., Anderman, E.M. (eds.).: International Guide to Student Achievement, 1 edn. Routledge, New York (2012)
Google Scholar
Castejon, J.L., Perez, A.M., Gilar, R.: Confirmatory factor analysis of project spectrum activities. A second-order g factor or multiple intelligences? Intelligence 38(5), 481–496 (2010)
CrossRef
Google Scholar
Sternberg, R.J., Castejón, J.L., Prieto, M.D., Hautamäki, J., Grigorenko, E.L.: Confirmatory factor analysis of the Sternberg Triarchic Abilities Test in three international samples: an empirical test of the triarchic theory of intelligence. Eur. J. Psychol. Assess. 17(1), 1–16 (2001)
CrossRef
Google Scholar
Gardner, H.: Intelligence Reframed: Multiple Intelligences for the 21st century. Basic Books, New York (2000) OCLC: 247819868
Google Scholar
Sternberg.: Beyond IQ Paperback: A Triarchic Theory of Human Intelligence. Cambridge University Press, Cambridge (2009)
Google Scholar
Gardner, H.: Multiple Intelligences: Reflections After Thirty Years. National Association of Gifted Children Parent and Community Network Newsletter (2011)
Google Scholar
Quenk, N.L.: Essentials of Myers-Briggs Type Indicator Assessment, 2nd edn. Essentials of Psychological Assessment Series. Wiley, Hoboken (2009) OCLC: ocn320494042
Google Scholar
Webb, T.L., Sheeran, P.: Does changing behavioral intentions engender behavior change? A meta-analysis of the experimental evidence. Psychol. Bull. 132(2), 249–268 (2006)
CrossRef
Google Scholar
OECD.: Student Engagement at School: A Sense of Belonging and Participation: Results from PISA 2000. PISA. OECD (2003)
Google Scholar
Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Perennial Modern Classics. Harper & Row (1990)
Google Scholar
Castejón Costa, J.L.: Introducción a la psicología de la instrucción. Editorial Club Universitario (1997)
Google Scholar
Messick, S.J.: Structural relationships across cognition, personality, and style. In: Snow, R.E., Farr, M.J., Farr, M.J. (eds.) Aptitude, Learning, and Instruction: Volume 3: Cognitive and Affective Process Analyses, vol. 3. Routledge, Hillsdale (1987)
Google Scholar
Schmeck, R.R. (ed.).: Learning Strategies and Learning Styles. Perspectives on Individual Differences. Springer, US (1988)
Google Scholar
Kolb, D.A.: Facilitator’s Guide to Learning. Hay Group Transforming Learning (2000)
Google Scholar
Ruffing, S., Hahn, E., Spinath, F.M., Brünken, R., Karbach, J.: Predicting students’ learning strategies: the contribution of chronotype over personality. Pers. Individ. Differ. 85, 199–204 (2015)
CrossRef
Google Scholar
Jensen, A.R.: The g Factor: The Science of Mental Ability. The Science of Mental Ability. Praeger Publishers/Greenwood Publishing Group, Westport, The g Factor (1998)
Google Scholar
Carberry, S., Carbonell, J.G., Chin, D.N., Cohen, R., Lehman, J.F., Finin, T.W., Jameson, A., Jones, M., Kass, R., Kobsa, A., McCoy, K.F., Morik, K., Paris, C.L., Quilici, A.E., Rich, E., Jones, K.S., Wahlster, W.: User Models in Dialog Systems. Softcover reprint of the original, 1st edn. (1989 edn.) Springer (2011)
Google Scholar
Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)
Google Scholar
Siemens, G.: Learning analytics: the emergence of a discipline. Am. Behav. Sci. 57(10), 1380–1400 (2013)
CrossRef
Google Scholar
Niles-Hofmann, L.: Data-Driven Learning Design
Google Scholar
Villagrá-Arnedo, C., Gallego-Duraìn, F.J., Compañ-Rosique, P., Llorens-Largo, F., Molina-Carmona, R.: Predicting academic performance from behavioural and learning data. Int. J. Des. Nat. Ecodyn. 11(3), 239–249 (2016)
CrossRef
Google Scholar
Villagrá-Arnedo, C.J., Gallego-Durán, F.J., Llorens-Largo, F., Compañ-Rosique, P., Satorre-Cuerda, R., Molina-Carmona, R.: Improving the expressiveness of black-box models for predicting student performance. Comput. Hum. Behav. 72, 621–631 (2017)
CrossRef
Google Scholar
Molina-Carmona, R., Villagrá-Arnedo, C., Gallego-Durán, F., Llorens-Largo, F.: Analytics-driven redesign of an instructional course. In: Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality—TEEM 2017, pp. 1–7. ACM Press, Cádiz, Spain (2017)
Google Scholar
Fröschl, C., Nguyen, L., Do, P.: Learner Model in Adaptive Learning, vol. 35. Paris (2008)
Google Scholar
Bull, S., Kay, J.: Open learner models. In: Kacprzyk, J., Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems, vol. 308, pp. 301–322. Springer, Berlin Heidelberg (2010)
Google Scholar
Macfadyen, L.P., Dawson, S.: Mining LMS data to develop an “early warning system” for educators: a proof of concept. Comput. Educ. 54(2), 588–599 (2010)
CrossRef
Google Scholar
Fröschl, C.: User Modeling and User Profiling in Adaptive E-learning Systems: An Approach for a Service-Based Personalization Solution for the Research Project AdeLE. VDM Verlag Dr, Müller (2008)
Google Scholar
Alonso, C.M., Gallego, D., Honey, P.: Los Estilos de Aprendizaje: Procedimientos de diagnóstico y mejora, 7th edn. Ediciones Mensajero, S.A., Bilbao (2007)
Google Scholar
Gallego, D.: Diagnosticar los estilos de aprendizaje (2019)
Google Scholar
Gallego Rodríguez, A., Martínez Caro, E.: Estilos de aprendizaje y e-learning. Hacia un mayor rendimiento académico. Rev. de Educación a Distancia (7) (2003)
Google Scholar
García Cué, J.L., Santizo Rincón, J.A., Alonso García, C.M.A.: IInstrumentos de medición de estilos de aprendizaje. J. Learn. Styles 2(4) (2009)
Google Scholar
Palomino Hawasly, M.A., Strefezza, M., Contreras Bravo, L.E.: Sistema Difuso Para la Detección Automática de Estilos de Aprendizaje en Ambientes de Formación Web. Ciencia, Docencia y Tecnología 27(52), 9 (2016)
Google Scholar
Canfield, A.A.: Western Psychological Services (Firm): Canfield Learning Styles Inventory (LSI) Manual. Western Psychological Services, Los Angeles (1988)
Google Scholar
Price, G.E., Dunn, R., Dunn, K.J.: Productivity Environmental Preference Survey: An Inventory for the Identification of Individual Adult Preferences in a Working Or Learning Environment. Peps Manual, Price Systems (1991)
Google Scholar
Grasha, A.F.: Teaching with Style : A Practical Guide to Enhancing Learning by Understanding Teaching and Learning Styles. Alliance Publishers (1996)
Google Scholar
Rezler, A.G., Rezmovic, V.: The learning preference inventory. J. Allied Health 10(1), 28–34 (1981)
Google Scholar
Biggs, J., Kember, D., Leung, D.Y.: The revised two-factor study process questionnaire: R-SPQ-2f. Br. J. Educ. Psychol. 71(1), 133–149 (2001)
CrossRef
Google Scholar
Entwistle, N., Tait, H.: Approaches and Study Skills Inventory for Students (ASSIST) (Incorporating the Revised Approaches to Studying Inventory—RASI) (2013)
Google Scholar
Kolb, D., Kolb, A.: The Kolb learning style inventory 4.0: guide to theory. Psychometr. Res. Appl. (2013)
Google Scholar
Kagan, J., Rosman, B.L., Day, D., Albert, J., Phillips, W.: Information processing in the child: significance of analytic and reflective attitudes. Psychol. Monogr. Gen. App. 78(1), 1–37 (1964)
CrossRef
Google Scholar
Aggarwal, C.C.: Machine Learning for Text, 1st edn. Springer (2018)
Google Scholar
Long, P., Siemens, G.: Penetrating the fog: analytics in learning and education. Educase Rev. (2011)
Google Scholar