Skip to main content

Deciding Reachability for Piecewise Constant Derivative Systems on Orientable Manifolds

  • Conference paper
  • First Online:
Reachability Problems (RP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11674))

Included in the following conference series:

Abstract

A hybrid automaton is a finite state machine combined with some k real-valued continuous variables, where k determines the number of the automaton dimensions. This formalism is widely used for modelling safety-critical systems, and verification tasks for such systems can often be expressed as the reachability problem for hybrid automata.

Asarin, Mysore, Pnueli and Schneider defined classes of hybrid automata lying on the boundary between decidability and undecidability in their seminal paper ‘Low dimensional hybrid systems - decidable, undecidable, don’t know’ [9]. They proved that certain decidable classes become undecidable when given a little additional computational power, and showed that the reachability question remains unsolved for some 2-dimensional systems.

Piecewise Constant Derivative Systems on 2-dimensional manifolds (or PCD\(_{2m}\)) constitute a class of hybrid automata for which decidability of the reachability problem is unknown. In this paper we show that the reachability problem becomes decidable for PCD\(_{2m}\) if we slightly limit their dynamics, and thus we partially answer the open question of Asarin, Mysore, Pnueli and Schneider posed in [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A PCD can be seen as a special case of Polygonal Differential Inclusion Systems (SPDIs).

References

  1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MathSciNet  Google Scholar 

  2. Aranson, S.H.: Trajectories on nonorientable two-dimensional manifolds. Math. USSR-Sbornik 9(3), 297–313 (1969)

    Article  Google Scholar 

  3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Comput. Sci. 138(1), 35–65 (1995)

    Article  MathSciNet  Google Scholar 

  4. Asarin, E., Schneider, G.: Widening the boundary between decidable and undecidable hybrid systems*. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 193–208. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5_14

    Chapter  Google Scholar 

  5. Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reachability problem for planar differential inclusions. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-2_11

    Chapter  Google Scholar 

  6. Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid systems, part I: reachability. Theor. Comput. Sci. 379(1–2), 231–265 (2007)

    Article  Google Scholar 

  7. Bell, P.C., Chen, S., Jackson, L.: On the decidability and complexity of problems for restricted hierarchical hybrid systems. Theor. Comput. Sci. 652, 47–63 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bournez, O., Kurganskyy, O., Potapov, I.: Reachability problems for one-dimensional piecewise affine maps. Int. J. Found. Comput. Sci. 29(4), 529–549 (2018)

    Article  MathSciNet  Google Scholar 

  9. Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional hybrid systems - decidable, undecidable, don’t know. Inf. Comput. 211, 138–159 (2012)

    Article  MathSciNet  Google Scholar 

  10. Henle, M.: A Combinatorial Introduction to Topology. Dover Publications Inc., New York City (1979)

    MATH  Google Scholar 

  11. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

    Article  MathSciNet  Google Scholar 

  12. Kurganskyy, O., Potapov, I., Caparrini, F.S.: Computation in one-dimensional piecewise maps. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 706–709. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71493-4_66

    Chapter  MATH  Google Scholar 

  13. Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 137–151. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5_15

    Chapter  MATH  Google Scholar 

  14. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control Sig. Syst. 13(1), 1–21 (2000)

    Article  MathSciNet  Google Scholar 

  15. Maler, O., Pnueli, A.: Reachability analysis of planar multi-linear systems. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 194–209. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7_17

    Chapter  Google Scholar 

  16. Mayer, A.: Trajectories on the closed orientable surfaces. Rec. Math. [Mat. Sbornik] N.S. 12(54), 1, 71–84 (1943)

    Google Scholar 

  17. Mysore, V., Pnueli, A.: Refining the undecidability frontier of hybrid automata. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 261–272. Springer, Heidelberg (2005). https://doi.org/10.1007/11590156_21

    Chapter  MATH  Google Scholar 

  18. Rauzy, G.: Suites à termes dans un alphabet fini. In: Seminar on Number Theory (1982–1983). University of Bordeaux I, Talence, vol. 25, pp. 1–16 (1983)

    Google Scholar 

Download references

Acknowledgements

The authors thank Vincent Delecroix, Alexey Kanel-Belov, Alexey Klimenko, Alexandra Skripchenko and Eugene Asarin for their kind help and consultations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Tveretina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sandler, A., Tveretina, O. (2019). Deciding Reachability for Piecewise Constant Derivative Systems on Orientable Manifolds. In: Filiot, E., Jungers, R., Potapov, I. (eds) Reachability Problems. RP 2019. Lecture Notes in Computer Science(), vol 11674. Springer, Cham. https://doi.org/10.1007/978-3-030-30806-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30806-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30805-6

  • Online ISBN: 978-3-030-30806-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics