Abstract
A hybrid automaton is a finite state machine combined with some k real-valued continuous variables, where k determines the number of the automaton dimensions. This formalism is widely used for modelling safety-critical systems, and verification tasks for such systems can often be expressed as the reachability problem for hybrid automata.
Asarin, Mysore, Pnueli and Schneider defined classes of hybrid automata lying on the boundary between decidability and undecidability in their seminal paper ‘Low dimensional hybrid systems - decidable, undecidable, don’t know’ [9]. They proved that certain decidable classes become undecidable when given a little additional computational power, and showed that the reachability question remains unsolved for some 2-dimensional systems.
Piecewise Constant Derivative Systems on 2-dimensional manifolds (or PCD\(_{2m}\)) constitute a class of hybrid automata for which decidability of the reachability problem is unknown. In this paper we show that the reachability problem becomes decidable for PCD\(_{2m}\) if we slightly limit their dynamics, and thus we partially answer the open question of Asarin, Mysore, Pnueli and Schneider posed in [9].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A PCD can be seen as a special case of Polygonal Differential Inclusion Systems (SPDIs).
References
Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)
Aranson, S.H.: Trajectories on nonorientable two-dimensional manifolds. Math. USSR-Sbornik 9(3), 297–313 (1969)
Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Comput. Sci. 138(1), 35–65 (1995)
Asarin, E., Schneider, G.: Widening the boundary between decidable and undecidable hybrid systems*. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 193–208. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5_14
Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reachability problem for planar differential inclusions. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-2_11
Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid systems, part I: reachability. Theor. Comput. Sci. 379(1–2), 231–265 (2007)
Bell, P.C., Chen, S., Jackson, L.: On the decidability and complexity of problems for restricted hierarchical hybrid systems. Theor. Comput. Sci. 652, 47–63 (2016)
Bournez, O., Kurganskyy, O., Potapov, I.: Reachability problems for one-dimensional piecewise affine maps. Int. J. Found. Comput. Sci. 29(4), 529–549 (2018)
Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional hybrid systems - decidable, undecidable, don’t know. Inf. Comput. 211, 138–159 (2012)
Henle, M.: A Combinatorial Introduction to Topology. Dover Publications Inc., New York City (1979)
Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)
Kurganskyy, O., Potapov, I., Caparrini, F.S.: Computation in one-dimensional piecewise maps. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 706–709. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71493-4_66
Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 137–151. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5_15
Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control Sig. Syst. 13(1), 1–21 (2000)
Maler, O., Pnueli, A.: Reachability analysis of planar multi-linear systems. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 194–209. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7_17
Mayer, A.: Trajectories on the closed orientable surfaces. Rec. Math. [Mat. Sbornik] N.S. 12(54), 1, 71–84 (1943)
Mysore, V., Pnueli, A.: Refining the undecidability frontier of hybrid automata. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 261–272. Springer, Heidelberg (2005). https://doi.org/10.1007/11590156_21
Rauzy, G.: Suites à termes dans un alphabet fini. In: Seminar on Number Theory (1982–1983). University of Bordeaux I, Talence, vol. 25, pp. 1–16 (1983)
Acknowledgements
The authors thank Vincent Delecroix, Alexey Kanel-Belov, Alexey Klimenko, Alexandra Skripchenko and Eugene Asarin for their kind help and consultations.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Sandler, A., Tveretina, O. (2019). Deciding Reachability for Piecewise Constant Derivative Systems on Orientable Manifolds. In: Filiot, E., Jungers, R., Potapov, I. (eds) Reachability Problems. RP 2019. Lecture Notes in Computer Science(), vol 11674. Springer, Cham. https://doi.org/10.1007/978-3-030-30806-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-30806-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30805-6
Online ISBN: 978-3-030-30806-3
eBook Packages: Computer ScienceComputer Science (R0)