Skip to main content

An End-to-End Semantic Platform for Nutritional Diseases Management

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2019 (ISWC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11779))

Included in the following conference series:

Abstract

The self-management of nutritional diseases requires a system that combines food tracking with the potential risks of food categories on people’s health based on their personal health records (PHRs). The challenges range from the design of an effective food image classification strategy to the development of a full-fledged knowledge-based system. This maps the results of the classification strategy into semantic information that can be exploited for reasoning. However, current works mainly address the single challenges separately without their integration into a whole pipeline. In this paper, we propose a new end-to-end semantic platform where: (i) the classification strategy aims to extract food categories from food pictures; (ii) an ontology is used for detecting the risk factors of food categories for specific diseases; (iii) the Linked Open Data (LOD) Cloud is queried for extracting information concerning related diseases and comorbidities; and, (iv) information from the users’ PHRs are exploited for generating proper personal feedback. Experiments are conducted on a new publicly released dataset. Quantitative and qualitative evaluations, from two living labs, demonstrate the effectiveness and the suitability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cspinet.org/eating-healthy/why-good-nutrition-important.

  2. 2.

    http://aims.fao.org/vest-registry/vocabularies/agrovoc.

  3. 3.

    https://www.nlm.nih.gov/research/umls/.

  4. 4.

    The HeLiS extension is available on the HeLiS website http://w3id.org/helis.

  5. 5.

    http://www.trentinosalutedigitale.it/#primo.

  6. 6.

    The mobile applications are available on the stores and they are compliant, as the whole platform, with the GDPR rules. However, since PHRs from the Trentino Healthcare Department are used, the mobile applications cannot be used by people living outside our province. For informative purposes, here the Google Play Store links: https://play.google.com/store/apps/details?id=eu.fbk.trec.saluteplus https://play.google.com/store/apps/details?id=eu.fbk.trec.lifestyle.

  7. 7.

    The dataset, its comparison and the code are available at https://bit.ly/2Y7zSWZ.

References

  1. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4, 114–123 (2009)

    Google Scholar 

  2. Benmimoune, L., Hajjam, A., Ghodous, P., Andres, E., Talha, S., Hajjam, M.: Ontology-based medical decision support system to enhance chronic patients’ lifestyle within e-care telemonitoring platform. Stud. Health Technol. Inform. 213, 279–282 (2015)

    Google Scholar 

  3. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  4. Chen, J., Ngo, C.: Deep-based ingredient recognition for cooking recipe retrieval. In: ACM Multimedia, pp. 32–41. ACM (2016)

    Google Scholar 

  5. Chi, Y., Chen, T., Tsai, W.: A chronic disease dietary consultation system using OWL-based ontologies and semantic rules. J. Biomed. Inform. 53, 208–219 (2015)

    Article  Google Scholar 

  6. Ciocca, G., Napoletano, P., Schettini, R.: Food recognition: a new dataset, experiments, and results. IEEE J. Biomed. Health Inform. 21(3), 588–598 (2017)

    Article  Google Scholar 

  7. Ciocca, G., Napoletano, P., Schettini, R.: Learning CNN-based features for retrieval of food images. In: Battiato, S., Farinella, G.M., Leo, M., Gallo, G. (eds.) ICIAP 2017. LNCS, vol. 10590, pp. 426–434. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70742-6_41

    Chapter  Google Scholar 

  8. Dehais, J., Anthimopoulos, M., Shevchik, S., Mougiakakou, S.G.: Two-view 3D reconstruction for food volume estimation. IEEE Trans. Multimed. 19(5), 1090–1099 (2017)

    Article  Google Scholar 

  9. Dragoni, M., Bailoni, T., Maimone, R., Eccher, C.: HeLiS: an ontology for supporting healthy lifestyles. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 53–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_4

    Chapter  Google Scholar 

  10. Dragoni, M., Rospocher, M., Bailoni, T., Maimone, R., Eccher, C.: Semantic technologies for healthy lifestyle monitoring. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 307–324. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_19

    Chapter  Google Scholar 

  11. Ege, T., Yanai, K.: Image-based food calorie estimation using knowledge on food categories, ingredients and cooking directions. In: ACM Multimedia (Thematic Workshops), pp. 367–375. ACM (2017)

    Google Scholar 

  12. Fernández, J.D., Beek, W., Martínez-Prieto, M.A., Arias, M.: LOD-a-lot - a queryable dump of the LOD cloud. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 75–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_7

    Chapter  Google Scholar 

  13. Kawano, Y., Yanai, K.: Food image recognition with deep convolutional features. In: UbiComp Adjunct, pp. 589–593. ACM (2014)

    Google Scholar 

  14. Kawano, Y., Yanai, K.: Foodcam-256: a large-scale real-time mobile food recognition system employing high-dimensional features and compression of classifier weights. In: ACM Multimedia, pp. 761–762. ACM (2014)

    Google Scholar 

  15. Lu, Y., Allegra, D., Anthimopoulos, M., Stanco, F., Farinella, G.M., Mougiakakou, S.G.: A multi-task learning approach for meal assessment. In: MADiMa@IJCAI, pp. 46–52. ACM (2018)

    Google Scholar 

  16. Maimone, R., Guerini, M., Dragoni, M., Bailoni, T., Eccher, C.: Perkapp: a general purpose persuasion architecture for healthy lifestyles. J. Biomed. Inform. 82, 70–87 (2018)

    Article  Google Scholar 

  17. Mamykina, L., Levine, M.E., Davidson, P.G., Smaldone, A.M., Elhadad, N., Albers, D.J.: Data-driven health management: reasoning about personally generated data in diabetes with information technologies. JAMIA 23(3), 526–531 (2016)

    Google Scholar 

  18. Mezgec, S., Koroušić Seljak, B.: Nutrinet: a deep learning food and drink image recognition system for dietary assessment. Nutrients 9(7), 657 (2017)

    Article  Google Scholar 

  19. Mikolajczak, S., Ruette, T., Tsiporkova, E., Angelova, M., Boeva, V.: A semantic reasoning engine for lifestyle profiling in support of personalised coaching. In: International Conference on Global Health Challenges, pp. 79–83 (2015)

    Google Scholar 

  20. Myers, A., et al.: Im2Calories: towards an automated mobile vision food diary. In: ICCV, pp. 1233–1241. IEEE Computer Society (2015)

    Google Scholar 

  21. Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability problems. In: Proceedings of ACM INTERCHI 1993 Conference, pp. 24–29 (1993)

    Google Scholar 

  22. Okamoto, K., Yanai, K.: An automatic calorie estimation system of food images on a smartphone. In: MADiMa @ ACM Multimedia, pp. 63–70. ACM (2016)

    Google Scholar 

  23. Pouladzadeh, P., Shirmohammadi, S., Almaghrabi, R.: Measuring calorie and nutrition from food image. IEEE Trans. Instrum. Measur. 63(8), 1947–1956 (2014)

    Article  Google Scholar 

  24. Serafini, L., Donadello, I., d’Avila Garcez, A.S.: Learning and reasoning in logic tensor networks: theory and application to semantic image interpretation. In: SAC, pp. 125–130. ACM (2017)

    Google Scholar 

  25. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826. IEEE Computer Society (2016)

    Google Scholar 

  26. Tilahun, B., Kauppinen, T., Keßler, C., Fritz, F.: Design and developmentof a linked open data-based health information representation andvisualization system: potentials and preliminary evaluation. JMIR Med. Inform. 2(2), e31 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Dragoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Donadello, I., Dragoni, M. (2019). An End-to-End Semantic Platform for Nutritional Diseases Management. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11779. Springer, Cham. https://doi.org/10.1007/978-3-030-30796-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30796-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30795-0

  • Online ISBN: 978-3-030-30796-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics