Skip to main content

Squerall: Virtual Ontology-Based Access to Heterogeneous and Large Data Sources

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2019 (ISWC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11779))

Included in the following conference series:

Abstract

The last two decades witnessed a remarkable evolution in terms of data formats, modalities, and storage capabilities. Instead of having to adapt one’s application needs to the, earlier limited, available storage options, today there is a wide array of options to choose from to best meet an application’s needs. This has resulted in vast amounts of data available in a variety of forms and formats which, if interlinked and jointly queried, can generate valuable knowledge and insights. In this article, we describe Squerall: a framework that builds on the principles of Ontology-Based Data Access (OBDA) to enable the querying of disparate heterogeneous sources using a unique query language, SPARQL. In Squerall, original data is queried on-the-fly without prior data materialization or transformation. In particular, Squerall allows the aggregation and joining of large data in a distributed manner. Squerall supports out-of-the-box five data sources and moreover, it can be programmatically extended to cover more sources and incorporate new query engines. The framework provides user interfaces for the creation of necessary inputs, as well as guiding non-SPARQL experts to write SPARQL queries. Squerall is integrated into the popular SANSA stack and available as open-source software via GitHub and as a Docker image.

Software Framework. https://eis-bonn.github.io/Squerall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We used queue data structure simply to be able to dynamically pull (unqueue) elements from it iteratively till it has no more elements.

  2. 2.

    Available at https://github.com/EIS-Bonn/Squerall (Apache-2.0 license).

  3. 3.

    http://prestodb.io.

  4. 4.

    URL: http://purl.org/db/nosql, details are out of the scope of this article.

  5. 5.

    The 1.5M scale factor generates 500M RDF triples, and the 5M factor 1,75B triples.

  6. 6.

    See https://github.com/EIS-Bonn/Squerall/tree/master/evaluation.

  7. 7.

    https://github.com/SANSA-Stack/SANSA-DataLake.

  8. 8.

    www.big-data-europe.eu & https://github.com/big-data-europe.

  9. 9.

    https://github.com/EIS-Bonn/Squerall.

  10. 10.

    https://zenodo.org/record/2636436.

  11. 11.

    https://github.com/EIS-Bonn/Squerall/tree/master/evaluation/screencasts.

  12. 12.

    https://github.com/EIS-Bonn/Squerall/wiki/Extending-Squerall.

  13. 13.

    https://github.com/SDM-TIB/Ontario.

  14. 14.

    https://github.com/EIS-Bonn/Squerall/tree/master/evaluation.

  15. 15.

    https://spark-packages.org https://prestodb.io/docs/current/connector.

References

  1. Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to non-relational database systems: the SOS platform. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 160–174. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9_11

    Chapter  Google Scholar 

  2. Auer, S., et al.: The BigDataEurope platform – supporting the variety dimension of big data. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp. 41–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60131-1_3

    Chapter  Google Scholar 

  3. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. (IJSWIS) 5(2), 1–24 (2009)

    Article  Google Scholar 

  4. Botoeva, E., Calvanese, D., Cogrel, B., Corman, J., Xiao, G.: A generalized framework for ontology-based data access. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA 2018. LNCS (LNAI), vol. 11298, pp. 166–180. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03840-3_13

    Chapter  Google Scholar 

  5. Curé, O., Kerdjoudj, F., Faye, D., Le Duc, C., Lamolle, M.: On the potential integration of an ontology-based data access approach in NoSQL stores. Int. J. Distrib. Syst. Technol. (IJDST) 4(3), 17–30 (2013)

    Article  Google Scholar 

  6. Curé, O., Hecht, R., Le Duc, C., Lamolle, M.: Data integration over NoSQL stores using access path based mappings. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011. LNCS, vol. 6860, pp. 481–495. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23088-2_36

    Chapter  Google Scholar 

  7. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. Working Group Recommendation, W3C, September 2012

    Google Scholar 

  8. De Meester, B., Dimou, A., Verborgh, R., Mannens, E.: An ontology to semantically declare and describe functions. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 46–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47602-5_10

    Chapter  Google Scholar 

  9. De Meester, B., Maroy, W., Dimou, A., Verborgh, R., Mannens, E.: Declarative data transformations for linked data generation: the case of DBpedia. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 33–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58451-5_3

    Chapter  Google Scholar 

  10. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: LDOW (2014)

    Google Scholar 

  11. Dixon, J.: Pentaho, Hadoop, and Data Lakes (2010). https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes. Accessed 27 Jan 2019

  12. Endris, K.M., Galkin, M., Lytra, I., Mami, M.N., Vidal, M.-E., Auer, S.: MULDER: querying the linked data web by bridging RDF molecule templates. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10438, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64468-4_1

    Chapter  Google Scholar 

  13. Gadepally, V., et al.: The BigDAWG polystore system and architecture. In: High Performance Extreme Computing Conference, pp. 1–6. IEEE (2016)

    Google Scholar 

  14. Giese, M., et al.: Optique: zooming in on big data. Computer 48(3), 60–67 (2015)

    Article  Google Scholar 

  15. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C Recommendation 21(10) (2013)

    Google Scholar 

  16. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira, J.: CloudMdsQL: querying heterogeneous cloud data stores with a common language. Distrib. Parallel Databases 34(4), 463–503 (2016)

    Article  Google Scholar 

  17. Kolychev, A., Zaytsev, K.: Research of the effectiveness of SQL engines working in HDFS. J. Theor. Appl. Inf. Technol. 95(20), 5360–5368 (2017)

    Google Scholar 

  18. Lehmann, J., et al.: Distributed semantic analytics using the SANSA stack. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 147–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_15

    Chapter  Google Scholar 

  19. Mami, M.N., Graux, D., Scerri, S., Jabeen, H., Auer, S.: Querying data lakes using spark and presto (2019, To appear in The WebConf - Demonstrations)

    Google Scholar 

  20. Michel, F., Faron-Zucker, C., Montagnat, J.: A mapping-based method to query MongoDB documents with SPARQL. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9828, pp. 52–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44406-2_6

    Chapter  Google Scholar 

  21. Miloslavskaya, N., Tolstoy, A.: Application of big data, fast data, and data lake concepts to information security issues. In: International Conference on Future Internet of Things and Cloud Workshops, pp. 148–153. IEEE (2016)

    Google Scholar 

  22. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ unifying semi-structured query language, and an expressiveness benchmark of SQL-on-Hadoop, NoSQL and NewSQL databases. CoRR, abs/1405.3631 (2014)

    Google Scholar 

  23. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77688-8_5

    Chapter  MATH  Google Scholar 

  24. Quix, C., Hai, R., Vatov, I.: GEMMS: a generic and extensible metadata management system for data lakes. In: CAiSE Forum, pp. 129–136 (2016)

    Google Scholar 

  25. Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selection for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 176–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_13

    Chapter  Google Scholar 

  26. Sellami, R., Bhiri, S., Defude, B.: Supporting multi data stores applications in cloud environments. IEEE Trans. Serv. Comput. 9(1), 59–71 (2016)

    Google Scholar 

  27. Sellami, R., Defude, B.: Complex queries optimization and evaluation over relational and NoSQL data stores in cloud environments. IEEE Trans. Big Data 4(2), 217–230 (2018)

    Article  Google Scholar 

  28. Spanos, D., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web: a survey. Semant. Web 1–41 (2010)

    Google Scholar 

  29. Unbehauen, J., Martin, M.: Executing SPARQL queries over mapped document stores with SparqlMap-M. In: 12th International Conference on Semantic Systems (2016)

    Google Scholar 

  30. Vathy-Fogarassy, Á., Hugyák, T.: Uniform data access platform for SQL and NoSQL database systems. Inf. Syst. 69, 93–105 (2017)

    Article  Google Scholar 

  31. Vogt, M., Stiemer, A., Schuldt, H.: Icarus: towards a multistore database system. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2490–2499 (2017)

    Google Scholar 

  32. Walker, C., Alrehamy, H.: Personal data lake with data gravity pull. In: 5th International Conference on Big Data and Cloud Computing, pp. 160–167. IEEE (2015)

    Google Scholar 

  33. Wiewiórka, M.S., Wysakowicz, D.P., Okoniewski, M.J., Gambin, T.: Benchmarking distributed data warehouse solutions for storing genomic variant information. Database 2017 (2017)

    Google Scholar 

  34. Xiao, G., et al.: Ontology-based data access: a survey. In: IJCAI (2018)

    Google Scholar 

  35. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. HotCloud 10(10–10), 95 (2010)

    Google Scholar 

Download references

Acknowledgment

This work is partly supported by the EU H2020 projects BETTER (GA 776280) and QualiChain (GA 822404); and by the ADAPT Centre for Digital Content Technology funded under the SFI Research Centres Programme (Grant 13/RC/2106) and co-funded under the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Nadjib Mami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mami, M.N., Graux, D., Scerri, S., Jabeen, H., Auer, S., Lehmann, J. (2019). Squerall: Virtual Ontology-Based Access to Heterogeneous and Large Data Sources. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11779. Springer, Cham. https://doi.org/10.1007/978-3-030-30796-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30796-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30795-0

  • Online ISBN: 978-3-030-30796-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics