Advertisement

FoodKG: A Semantics-Driven Knowledge Graph for Food Recommendation

  • Steven Haussmann
  • Oshani SeneviratneEmail author
  • Yu Chen
  • Yarden Ne’eman
  • James Codella
  • Ching-Hua Chen
  • Deborah L. McGuinness
  • Mohammed J. ZakiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11779)

Abstract

The proliferation of recipes and other food information on the Web presents an opportunity for discovering and organizing diet-related knowledge into a knowledge graph. Currently, there are several ontologies related to food, but they are specialized in specific domains, e.g., from an agricultural, production, or specific health condition point-of-view. There is a lack of a unified knowledge graph that is oriented towards consumers who want to eat healthily, and who need an integrated food suggestion service that encompasses food and recipes that they encounter on a day-to-day basis, along with the provenance of the information they receive. Our resource contribution is a software toolkit that can be used to create a unified food knowledge graph that links the various silos related to food while preserving the provenance information. We describe the construction process of our knowledge graph, the plan for its maintenance, and how this knowledge graph has been utilized in several applications. These applications include a SPARQL-based service that lets a user determine what recipe to make based on ingredients at hand while taking constraints such as allergies into account, as well as a cognitive agent that can perform natural language question answering on the knowledge graph.

Resource Website: https://foodkg.github.io

Notes

Acknowledgements

This work is partially supported by IBM Research AI through the AI Horizons Network.

References

  1. 1.
    American Diabetes Association: 4. lifestyle management: standards of medical care in diabetes—2018. Diab. Care 40(Suppl. 1), S33–S43 (2017)CrossRefGoogle Scholar
  2. 2.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_52CrossRefGoogle Scholar
  3. 3.
    Batista, F., Pardal, J.P., Mamede, P.V.N., Ribeiro, R.: Ontology construction: cooking domain. Artif. Intell.: Method. Syst. Appl. 41, 1–30 (2006)Google Scholar
  4. 4.
    Boulos, M., Yassine, A., Shirmohammadi, S., Namahoot, C., Brückner, M.: Towards an “internet of food”: food ontologies for the Internet of Things. Future Internet 7(4), 372–392 (2015)CrossRefGoogle Scholar
  5. 5.
    Cantais, J., Dominguez, D., Gigante, V., Laera, L., Tamma, V.: An example of food ontology for diabetes control. In: ISWC workshop on Ontology Patterns for the Semantic Web (2005)Google Scholar
  6. 6.
    Chen, Y., Wu, L., Zaki, M.J.: Bidirectional attentive memory networks for question answering over knowledge bases. In: Annual Conference of the North American Chapter of the Association for Computational Linguistics (2019)Google Scholar
  7. 7.
    Clunis, J.: Designing an ontology for managing the diets of hypertensive individuals. Int. J. Digit. Librar. 20, 269–284 (2019) CrossRefGoogle Scholar
  8. 8.
    DeSalvo, K., Olson, R., Casavale, K.: Dietary guidelines for Americans. JAMA 315(5), 457–458 (2016)CrossRefGoogle Scholar
  9. 9.
    Dooley, D.M., et al.: FoodOn: a harmonized food ontology to increase global food traceability, quality control and data integration. npj Sci. Food 2(1), 23 (2018)CrossRefGoogle Scholar
  10. 10.
    Dragoni, M., Bailoni, T., Maimone, R., Eccher, C.: HeLiS: an ontology for supporting healthy lifestyles. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 53–69. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00668-6_4CrossRefGoogle Scholar
  11. 11.
    El-Dosuky, M.A., Rashad, M.Z., Hamza, T.T., EL-Bassiouny, A.H.: Food recommendation using ontology and heuristics. In: Hassanien, A.E., Salem, A.-B.M., Ramadan, R., Kim, T. (eds.) AMLTA 2012. CCIS, vol. 322, pp. 423–429. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35326-0_42CrossRefGoogle Scholar
  12. 12.
    Groth, P., Gibson, A., Velterop, J.: The anatomy of a nanopublication. Inf. Serv. Use 30, 51–56 (2010)CrossRefGoogle Scholar
  13. 13.
    Gyrard, A., Bonnet, C., Boudaoud, K., Serrano, M.: Lov4iot: a second life for ontology-based domain knowledge to build semantic web of things applications. In: 4th IEEE International Conference on Future Internet of Things and Cloud (2016)Google Scholar
  14. 14.
    Helmy, T., Al-Nazer, A., Al-Bukhitan, S., Iqbal, A.: Health, food and user’s profile ontologies for personalized information retrieval. Procedia Comput. Sci. 52, 1071–1076 (2015)CrossRefGoogle Scholar
  15. 15.
    Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. In: 15th Conference of the European Chapter of the Association for Computational Linguistics (2017)Google Scholar
  16. 16.
    Kolchin, M., Zamula, D.: Food product ontology: Initial implementation of a vocabulary for describing food products. In: 14th Conference of Open Innovations Association (2013)Google Scholar
  17. 17.
    Ley, S.H., Hamdy, O., Mohan, V., Hu, F.B.: Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383(9933), 1999–2007 (2014)CrossRefGoogle Scholar
  18. 18.
    Marin, J., et al.: Recipe1m: a dataset for learning cross-modal embeddings for cooking recipes and food images. arXiv preprint arXiv:1810.06553 (2018)
  19. 19.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  20. 20.
    Peroni, S., Lodi, G., Asprino, L., Gangemi, A., Presutti, V.: FOOD: FOod in open data. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 168–176. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46547-0_18CrossRefGoogle Scholar
  21. 21.
    Rashid, S.M., Chastain, K., Stingone, J.A., McGuinness, D.L., McCusker, J.P.: The semantic data dictionary approach to data annotation & integration. In: 1st Workshop on Enabling Open Semantic Science (2017)Google Scholar
  22. 22.
    Snae, C., Bruckner, M.: FOODS: a food-oriented ontology-driven system. In: 2nd IEEE International Conference on Digital Ecosystems and Technologies (2008)Google Scholar
  23. 23.
    Trattner, C., Elsweiler, D.: Food recommender systems: important contributions, challenges and future research directions. arXiv preprint arXiv:1711.02760 (2017)
  24. 24.
    Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Scientific Data 3, 160018 EP - (2016) Google Scholar
  25. 25.
    Xiang, Z., Courtot, M., Brinkman, R.R., Ruttenberg, A., He, Y.: Ontofox: web-based support for ontology reuse. BMC Res. Notes 3(1), 175 (2010)CrossRefGoogle Scholar
  26. 26.
    Zulaika, U., Gutiérrez, A., López-de Ipiña, D.: Enhancing profile and context aware relevant food search through knowledge graphs. In: 12th International Conference on Ubiquitous Computing and Ambient Intelligence (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Rensselaer Polytechnic InstituteTroyUSA
  2. 2.IBM ResearchYorktown HeightsUSA

Personalised recommendations