Popularity-Driven Ontology Ranking Using Qualitative Features

  • Niklas KolbeEmail author
  • Sylvain Kubler
  • Yves Le Traon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11778)


Efficient ontology reuse is a key factor in the Semantic Web to enable and enhance the interoperability of computing systems. One important aspect of ontology reuse is concerned with ranking most relevant ontologies based on a keyword query. Apart from the semantic match of query and ontology, the state-of-the-art often relies on ontologies’ occurrences in the Linked Open Data (LOD) cloud to determine relevance. We observe that ontologies of some application domains, in particular those related to Web of Things (WoT), often do not appear in the underlying LOD datasets used to define ontologies’ popularity, resulting in ineffective ranking scores. This motivated us to investigate – based on the problematic WoT case – whether the scope of ranking models can be extended by relying on qualitative attributes instead of an explicit popularity feature. We propose a novel approach to ontology ranking by (i) selecting a range of relevant qualitative features, (ii) proposing a popularity measure for ontologies based on scholarly data, (iii) training a ranking model that uses ontologies’ popularity as prediction target for the relevance degree, and (iv) confirming its validity by testing it on independent datasets derived from the state-of-the-art. We find that qualitative features help to improve the prediction of the relevance degree in terms of popularity. We further discuss the influence of these features on the ranking model.


Learning to rank Ontology reuse Web of Things Linked vocabularies Semantic interoperability 



The research leading to this publication is supported by the EU’s H2020 Research and Innovation program under grant agreement № 688203 – bIoTope.


  1. 1.
    Andročec, D., Novak, M., Oreški, D.: Using semantic web for internet of things interoperability: a systematic review. Int. J. Semant. Web Inf. Syst. (IJSWIS) 14(4), 147–171 (2018). Scholar
  2. 2.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). Scholar
  3. 3.
    Bakerally, N., Boissier, O., Zimmermann, A.: Smart city artifacts web portal. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 172–177. Springer, Cham (2016). Scholar
  4. 4.
    Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 1–21 (2012). Scholar
  5. 5.
    Burges, C.J.: From ranknet to lambdarank to lambdamart: an overview. Learning 11(23–581), 81 (2010)Google Scholar
  6. 6.
    Butt, A.S.: Ontology search: finding the right ontologies on the web. In: Proceedings of the 24th International Conference on World Wide Web, pp. 487–491. ACM (2015).
  7. 7.
    Butt, A.S., Haller, A., Xie, L.: Ontology search: an empirical evaluation. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 130–147. Springer, Cham (2014). Scholar
  8. 8.
    Butt, A.S., Haller, A., Xie, L.: DWRank: learning concept ranking for ontology search. Semant. Web 7(4), 447–461 (2016). Scholar
  9. 9.
    Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 621–630. ACM (2009).
  10. 10.
    Espinoza-Arias, P., Poveda-Villalón, M., García-Castro, R., Corcho, O.: Ontological representation of smart city data: from devices to cities. Appl. Sci. 9(1), 32 (2019). Scholar
  11. 11.
    Fernández-López, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Ontology development by reuse. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 147–170. Springer, Heidelberg (2012). Scholar
  12. 12.
    Gyrard, A., Bonnet, C., Boudaoud, K., Serrano, M.: Lov4iot: a second life for ontology-based domain knowledge to build semantic web of things applications. In: IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 254–261. IEEE (2016).
  13. 13.
    Gyrard, A., Zimmermann, A., Sheth, A.: Building IoT-based applications for smart cities: how can ontology catalogs help? IEEE Internet Things J. 5(5), 3978–3990 (2018). Scholar
  14. 14.
    Katsumi, M., Grüninger, M.: Choosing ontologies for reuse. Appl. Ontol. 12(3–4), 195–221 (2017). Scholar
  15. 15.
    Kolbe, N., Kubler, S., Robert, J., Le Traon, Y., Zaslavsky, A.: Linked vocabulary recommendation tools for internet of things: a survey. ACM Comput. Surv. (CSUR) 51(6), 127 (2019). Scholar
  16. 16.
    Kolchin, M., et al.: Ontologies for web of things: a pragmatic review. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2015. CCIS, vol. 518, pp. 102–116. Springer, Cham (2015). Scholar
  17. 17.
    Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331 (2009). Scholar
  18. 18.
    Martínez-Romero, M., Jonquet, C., O’Connor, M.J., Graybeal, J., Pazos, A., Musen, M.A.: NCBO ontology recommender 2.0: an enhanced approach for biomedical ontology recommendation. J. Biomed. Semant. 8(1), 21 (2017). Scholar
  19. 19.
    McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action: Covers Apache Lucene 3.0. Manning Publications Co., Shelter Island (2010). ISBN 1933988177Google Scholar
  20. 20.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  21. 21.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995). Scholar
  22. 22.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report 1999-66, Stanford InfoLab (1999)Google Scholar
  23. 23.
    Poveda Villalón, M., García Castro, R., Gómez-Pérez, A.: Building an ontology catalogue for smart cities, pp. 829–839. CRC Press (2014)Google Scholar
  24. 24.
    Robertson, S.E.: Overview of the Okapi projects. J. Doc. 53(1), 3–7 (1997). Scholar
  25. 25.
    Sabou, M., Lopez, V., Motta, E., Uren, V.: Ontology selection: ontology evaluation on the real semantic web. In: 4th International Workshop on Evaluation of Ontologies for the Web (2006)Google Scholar
  26. 26.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988). Scholar
  27. 27.
    Schaible, J., Gottron, T., Scherp, A.: Survey on common strategies of vocabulary reuse in linked open data modeling. In: Presutti, V., et al. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 457–472. Springer, Cham (2014). Scholar
  28. 28.
    Schaible, J., Gottron, T., Scherp, A.: TermPicker: enabling the reuse of vocabulary terms by exploiting data from the linked open data cloud. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 101–117. Springer, Cham (2016). Scholar
  29. 29.
    Simperl, E.: Reusing ontologies on the semantic web: a feasibility study. Data Knowl. Eng. 68(10), 905–925 (2009). Scholar
  30. 30.
    Stadtmüller, S., Harth, A., Grobelnik, M.: Accessing information about linked data vocabularies with In: Li, J., Qi, G., Zhao, D., Nejdl, W., Zheng, H.T. (eds.) Semantic Web and Web Science. Springer, New York (2013). Scholar
  31. 31.
    Stavrakantonakis, I., Fensel, A., Fensel, D.: Linked open vocabulary ranking and terms discovery. In: Proceedings of the 12th International Conference on Semantic Systems, pp. 1–8. ACM (2016).
  32. 32.
    Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked open vocabularies (LOV): a gateway to reusable semantic vocabularies on the web. Semant. Web 8(3), 437–452 (2017). Scholar
  33. 33.
    Wu, G., Li, J., Feng, L., Wang, K.: Identifying potentially important concepts and relations in an ontology. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 33–49. Springer, Heidelberg (2008). Scholar
  34. 34.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of LuxembourgLuxembourgLuxembourg
  2. 2.Université de Lorraine and CRANVandœuvre-lès-NancyFrance

Personalised recommendations