RDF documentation from W3C. https://www.w3.org/RDF/
Abedjan, Z., Naumann, F.: Synonym analysis for predicate expansion. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 140–154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_10
CrossRef
Google Scholar
Algergawy, A., et al.: Results of the ontology alignment evaluation initiative 2018. In: CEUR-WS: Workshop Proceedings (2018)
Google Scholar
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC - 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
CrossRef
Google Scholar
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 1247–1250 (2008)
Google Scholar
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, NIPS 2013, vol. 26, pp. 2787–2795 (2013)
Google Scholar
Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th International Conference on Knowledge Discovery and Data Mining, SIGKDD 2014, pp. 601–610 (2014)
Google Scholar
Han, X., et al.: Openke: an open toolkit for knowledge embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, EMNLP 2018, pp. 139–144 (2018)
Google Scholar
Hertling, S., Paulheim, H.: DOME results for OAEI 2018. In: OM 2018: Proceedings of the 13th International Workshop on Ontology Matching Co-located with the 17th International Semantic Web Conference (ISWC 2018), Monterey, CA, USA, 8 October 2018, vol. 2288, pp. 144–151 (2018)
Google Scholar
Homoceanu, S., Kalo, J.-C., Balke, W.-T.: Putting instance matching to the test: is instance matching ready for reliable data linking? In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 274–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_28
CrossRef
Google Scholar
Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for linked open data. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_26
CrossRef
Google Scholar
Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, ACL 2015, pp. 687–696 (2015)
Google Scholar
Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: a dynamic multistrategy ontology alignment framework. IEEE Trans. Knowl. Data Eng. 21(8), 1218–1232 (2009)
CrossRef
Google Scholar
Kalo, J.C., Homoceanu, S., Rose, J., Balke, W.T.: Avoiding Chinese whispers: controlling end-to-end join quality in linked open data stores. In: Proceedings of the ACM Web Science Conference, WebSci 2015, pp. 5:1–5:10 (2015)
Google Scholar
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 2181–2187 (2015)
Google Scholar
Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, pp. 2168–2178 (2017)
Google Scholar
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, vol. 2, pp. 3111–3119 (2013)
Google Scholar
Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)
CrossRef
Google Scholar
Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 1955–1961. AAAI Press (2016)
Google Scholar
Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pp. 809–816 (2011)
Google Scholar
Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing YAGO. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2017, p. 271 (2012)
Google Scholar
Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, pp. 1532–1543 (2014)
Google Scholar
Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(1), 73–79 (2011)
CrossRef
Google Scholar
Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: probabilistic alignment of relations, instances, and schema. Proc. VLDB Endow. 5(3), 157–168 (2011)
CrossRef
Google Scholar
Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, p. 697 (2007)
Google Scholar
Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, vol. 48, pp. 2071–2080 (2016)
Google Scholar
Vrandečić, D.: Wikidata: a new platform for collaborative data collection. In: Proceedings of the 21st International Conference on companion on World Wide Web, WWW 2012 Companion, p. 1063 (2012)
Google Scholar
Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)
CrossRef
Google Scholar
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2014, pp. 1112–1119 (2014)
Google Scholar
Weeds, J., Clarke, D., Reffin, J., Weir, D., Keller, B.: Learning to distinguish hypernyms and co-hyponyms. In: Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers, COLING 2014, pp. 2249–2259 (2014)
Google Scholar
Yang, Q., Wooldridge, M.J., Codocedo, V., Napoli, A.: Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015 (2015)
Google Scholar