Skip to main content

Knowledge Graph Consolidation by Unifying Synonymous Relationships

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11778)

Abstract

Entity-centric information resources in the form of huge RDF knowledge graphs have become an important part of today’s information systems. But while the integration of independent sources promises rich information, their inherent heterogeneity also poses threats to the overall usefulness. To some degree challenges of heterogeneity have been addressed by creating underlying ontological structures. Yet, our analysis shows that synonymous relationships are still prevalent in current knowledge graphs. In this paper we compare state-of-the-art relational learning techniques to analyze the semantics of relationships for unifying synonymous relationships. By embedding relationships into latent feature models, we are able to identify relationships showing the same semantics in a data-driven fashion. The resulting relationship synonyms can be used for knowledge graph consolidation. We evaluate our technique on Wikidata, Freebase and DBpedia: we identify hundreds of existing relationship duplicates with very high precision, outperforming the current state-of-the-art method.

Keywords

  • Data quality
  • Synonym detection
  • Knowledge embedding

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30793-6_16
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-30793-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    http://oaei.ontologymatching.org/.

  2. 2.

    https://github.com/JanKalo/RelAlign.

  3. 3.

    https://github.com/JanKalo/RelAlign.

References

  1. RDF documentation from W3C. https://www.w3.org/RDF/

  2. Abedjan, Z., Naumann, F.: Synonym analysis for predicate expansion. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 140–154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_10

    CrossRef  Google Scholar 

  3. Algergawy, A., et al.: Results of the ontology alignment evaluation initiative 2018. In: CEUR-WS: Workshop Proceedings (2018)

    Google Scholar 

  4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC - 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    CrossRef  Google Scholar 

  5. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 1247–1250 (2008)

    Google Scholar 

  6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, NIPS 2013, vol. 26, pp. 2787–2795 (2013)

    Google Scholar 

  7. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th International Conference on Knowledge Discovery and Data Mining, SIGKDD 2014, pp. 601–610 (2014)

    Google Scholar 

  8. Han, X., et al.: Openke: an open toolkit for knowledge embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, EMNLP 2018, pp. 139–144 (2018)

    Google Scholar 

  9. Hertling, S., Paulheim, H.: DOME results for OAEI 2018. In: OM 2018: Proceedings of the 13th International Workshop on Ontology Matching Co-located with the 17th International Semantic Web Conference (ISWC 2018), Monterey, CA, USA, 8 October 2018, vol. 2288, pp. 144–151 (2018)

    Google Scholar 

  10. Homoceanu, S., Kalo, J.-C., Balke, W.-T.: Putting instance matching to the test: is instance matching ready for reliable data linking? In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 274–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_28

    CrossRef  Google Scholar 

  11. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for linked open data. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_26

    CrossRef  Google Scholar 

  12. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, ACL 2015, pp. 687–696 (2015)

    Google Scholar 

  13. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: a dynamic multistrategy ontology alignment framework. IEEE Trans. Knowl. Data Eng. 21(8), 1218–1232 (2009)

    CrossRef  Google Scholar 

  14. Kalo, J.C., Homoceanu, S., Rose, J., Balke, W.T.: Avoiding Chinese whispers: controlling end-to-end join quality in linked open data stores. In: Proceedings of the ACM Web Science Conference, WebSci 2015, pp. 5:1–5:10 (2015)

    Google Scholar 

  15. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 2181–2187 (2015)

    Google Scholar 

  16. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, pp. 2168–2178 (2017)

    Google Scholar 

  17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, vol. 2, pp. 3111–3119 (2013)

    Google Scholar 

  18. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    CrossRef  Google Scholar 

  19. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 1955–1961. AAAI Press (2016)

    Google Scholar 

  20. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pp. 809–816 (2011)

    Google Scholar 

  21. Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing YAGO. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2017, p. 271 (2012)

    Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, pp. 1532–1543 (2014)

    Google Scholar 

  23. Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(1), 73–79 (2011)

    CrossRef  Google Scholar 

  24. Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: probabilistic alignment of relations, instances, and schema. Proc. VLDB Endow. 5(3), 157–168 (2011)

    CrossRef  Google Scholar 

  25. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, p. 697 (2007)

    Google Scholar 

  26. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, vol. 48, pp. 2071–2080 (2016)

    Google Scholar 

  27. Vrandečić, D.: Wikidata: a new platform for collaborative data collection. In: Proceedings of the 21st International Conference on companion on World Wide Web, WWW 2012 Companion, p. 1063 (2012)

    Google Scholar 

  28. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    CrossRef  Google Scholar 

  29. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2014, pp. 1112–1119 (2014)

    Google Scholar 

  30. Weeds, J., Clarke, D., Reffin, J., Weir, D., Keller, B.: Learning to distinguish hypernyms and co-hyponyms. In: Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers, COLING 2014, pp. 2249–2259 (2014)

    Google Scholar 

  31. Yang, Q., Wooldridge, M.J., Codocedo, V., Napoli, A.: Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Christoph Kalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kalo, JC., Ehler, P., Balke, WT. (2019). Knowledge Graph Consolidation by Unifying Synonymous Relationships. In: , et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30793-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30792-9

  • Online ISBN: 978-3-030-30793-6

  • eBook Packages: Computer ScienceComputer Science (R0)