Skip to main content

3-Colorable Planar Graphs Have an Intersection Segment Representation Using 3 Slopes

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11789)

Abstract

In his PhD Thesis E.R. Scheinerman conjectured that planar graphs are intersection graphs of segments in the plane. This conjecture was proved with two different approaches. In the case of 3-colorable planar graphs E.R. Scheinerman conjectured that it is possible to restrict the set of slopes used by the segments to only 3 slopes. Here we prove this conjecture by using an approach introduced by S. Felsner to deal with contact representations of planar graphs with homothetic triangles.

Keywords

  • Planar graphs
  • Segment intersections

This research is partially supported by the ANR GATO, under contract ANR-16-CE40-0009.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-30786-8_27
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-30786-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. de Castro, N., Cobos, F., Dana, J.C., Márquez, A., Noy, M.: Triangle-free planar graphs as segment intersection graphs. J. Graph Algorithms Appl. 6(1), 7–26 (2002)

    MathSciNet  CrossRef  Google Scholar 

  2. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the plane: extended abstract. In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, pp. 631–638 (2009)

    Google Scholar 

  3. Czyzowicz, J., Kranakis, E., Urrutia, J.: A simple proof of the representation of bipartite planar graphs as the contact graphs of orthogonal straight line segments. Inform. Process. Lett. 66(3), 125–126 (1998)

    MathSciNet  CrossRef  Google Scholar 

  4. Felsner, S.: Triangle contact representations. In: Midsummer Combinatorial Workshop (2009)

    Google Scholar 

  5. de Fraysseix, H., Ossona de Mendez, P.: Representations by contact and intersection of segments. Algorithmica 47, 453–463 (2007)

    MathSciNet  CrossRef  Google Scholar 

  6. de Fraysseix, H., de Mendez, P.O., Pach, J.: Representation of planar graphs by segments. Colloq. Math. Soc. János Bolyai 63, 109–117 (1994). Intuitive Geometry (Szeged, 1991)

    MathSciNet  MATH  Google Scholar 

  7. Gonçalves, D., Isenmann, L., Pennarun, C.: Planar Graphs as L-intersection or L-contact graphs. In: Proceedings of SODA, pp. 172–184 (2018)

    CrossRef  Google Scholar 

  8. Hartman, I.B.-A., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Math. 87(1), 41–52 (1991)

    MathSciNet  CrossRef  Google Scholar 

  9. Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Combin. Theory. Ser. B 52, 67–78 (1991)

    MathSciNet  CrossRef  Google Scholar 

  10. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Combin. Theory. Ser. B 62, 180–181 (1994)

    MathSciNet  CrossRef  Google Scholar 

  11. Máčajová, E., Raspaud, A., Škoviera, M.: The chromatic number of a signed graph. Electr. J. Comb. 23(1), P1, 1–14 (2016)

    Google Scholar 

  12. Pach, J., Solymosi, J.: Crossing patterns of segments. J. Combin. Theory. Ser. A 96, 316–325 (2001)

    MathSciNet  CrossRef  Google Scholar 

  13. Scheinerman, E.R.: Intersection classes and multiple intersection parameters of graphs. Ph.D., Thesis, Princeton University (1984)

    Google Scholar 

  14. Scheinerman, E.R.: Private communication to D. West (1993)

    Google Scholar 

  15. West, D.: Open problems. SIAM J. Discrete Math. Newslett. 2(1), 10–12 (1991)

    Google Scholar 

Download references

Acknowledgements

The author is thankful to Marc de Visme for fruitful discussions on this topic, and to Pascal Ochem for bringing [11] to his attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gonçalves, D. (2019). 3-Colorable Planar Graphs Have an Intersection Segment Representation Using 3 Slopes. In: Sau, I., Thilikos, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2019. Lecture Notes in Computer Science(), vol 11789. Springer, Cham. https://doi.org/10.1007/978-3-030-30786-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30786-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30785-1

  • Online ISBN: 978-3-030-30786-8

  • eBook Packages: Computer ScienceComputer Science (R0)