Advertisement

On Happy Colorings, Cuts, and Structural Parameterizations

  • Ivan Bliznets
  • Danil SagunovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11789)

Abstract

We study the Maximum Happy Vertices and Maximum Happy Edges problems. The former problem is a variant of clusterization, where some vertices have already been assigned to clusters. The second problem gives a natural generalization of Multiway Uncut, which is the complement of the classical Multiway Cut problem. Due to their fundamental role in theory and practice, clusterization and cut problems has always attracted a lot of attention. We establish a new connection between these two classes of problems by providing a reduction between Maximum Happy Vertices and Node Multiway Cut. Moreover, we study structural and distance to triviality parameterizations of Maximum Happy Vertices and Maximum Happy Edges. Obtained results in these directions answer questions explicitly asked in four works: Agrawal ’17, Aravind et al. ’16, Choudhari and Reddy ’18, Misra and Reddy ’17.

Keywords

Happy coloring Maximum happy vertices Maximum happy edges Homophily law Multiway cut Distance to triviality Treewidth Clique-width Parameterized complexity 

References

  1. 1.
    Agrawal, A.: On the parameterized complexity of happy vertex coloring. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 103–115. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78825-8_9CrossRefGoogle Scholar
  2. 2.
    Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44543-4_22CrossRefzbMATHGoogle Scholar
  3. 3.
    Aravind, N., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)
  4. 4.
    Belmonte, R., Golovach, P.A., van ’t Hof, P., Paulusma, D.: Parameterized complexity of two edge contraction problems with degree constraints. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 16–27. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03898-8_3CrossRefzbMATHGoogle Scholar
  5. 5.
    Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chitnis, R., Fomin, F.V., Lokshtanov, D., Misra, P., Ramanujan, M.S., Saurabh, S.: Faster exact algorithms for some terminal set problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 150–162. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03898-8_14CrossRefzbMATHGoogle Scholar
  7. 7.
    Choudhari, J., Reddy, I.V.: On structural parameterizations of happy coloring, empire coloring and boxicity. In: Rahman, M.S., Sung, W.-K., Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 228–239. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75172-6_20CrossRefzbMATHGoogle Scholar
  8. 8.
    Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cygan, M., et al.: Parameterized Algorithms, vol. 3. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-21275-3CrossRefzbMATHGoogle Scholar
  11. 11.
    Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theor. Comput. Sci. 412(50), 6982–7000 (2011).  https://doi.org/10.1016/j.tcs.2011.09.010MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Diestel, R.: Graph Theory. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-53622-3CrossRefzbMATHGoogle Scholar
  13. 13.
    Gao, H., Gao, W.: Kernelization for maximum happy vertices problem. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 504–514. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77404-6_37CrossRefGoogle Scholar
  14. 14.
    Hlineny, P., Oum, S.I., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2007)CrossRefGoogle Scholar
  15. 15.
    Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jansen, K., Scheffler, P., Woeginger, G.: The disjoint cliques problem. RAIRO-Oper. Res. 31(1), 45–66 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lackner, M., Pichler, R., Rümmele, S., Woltran, S.: Multicut on graphs of bounded clique-width. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 115–126. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31770-5_11CrossRefGoogle Scholar
  18. 18.
    Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: an analysis of the maximum happy vertices problem. Comput. Oper. Res. 103, 265–276 (2019)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Misra, N., Reddy, I.V.: The parameterized complexity of happy colorings. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 142–153. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78825-8_12CrossRefGoogle Scholar
  20. 20.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, Upper Saddle River (1981)zbMATHGoogle Scholar
  21. 21.
    Todinca, I.: Coloring powers of graphs of bounded clique-width. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 370–382. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39890-5_32CrossRefGoogle Scholar
  22. 22.
    Xu, Y., Goebel, R., Lin, G.: Submodular and supermodular multi-labeling, and vertex happiness. CoRR (2016)Google Scholar
  23. 23.
    Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum happy vertices and edges problems. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 159–170. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21398-9_13CrossRefGoogle Scholar
  24. 24.
    Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput. Sci. 593, 117–131 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhang, P., Xu, Y., Jiang, T., Li, A., Lin, G., Miyano, E.: Improved approximation algorithms for the maximum happy vertices and edges problems. Algorithmica 80(5), 1412–1438 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University Higher School of EconomicsSt. PetersburgRussia

Personalised recommendations