Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 207 Accesses

Abstract

Precision mass measurements of isotopes provide a critical avenue for the study of many areas of nuclear physics. Penning trap mass spectrometry provides the highest-precision avenue of study of the mass of radioactive nuclei. This chapter provides an overview of Penning trap mass spectrometry, as well as a description of the LEBIT facility at the National Superconducting Cyclotron Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reprinted from Cooper et al. [3], Copyright 2014, with permission from Elsevier.

  2. 2.

    Reprinted from Ringle et al. [18], Copyright 2009, with permission from Elsevier.

  3. 3.

    Reprinted from Ringle et al. [18], Copyright 2009, with permission from Elsevier.

  4. 4.

    Reprinted from Ringle et al. [18], Copyright 2009, with permission from Elsevier.

  5. 5.

    Reprinted from Kwiatkowski et al. [31], Copyright 2015, with permission from Elsevier.

References

  1. R. Ringle, G. Bollen, S. Schwarz, Penning trap mass spectrometry of rare isotopes produced via projectile fragmentation at the LEBIT facility. Int. J. Mass Spectrom. 349–350, 87–93 (2013)

    Article  Google Scholar 

  2. D.J. Morrissey, B.M. Sherrill, M. Steiner, A. Stolz, I. Wiedenhoever, Commissioning the A1900 projectile fragment separator. Nucl. Instrum. Methods Phys. Res. Sect. B 204, 90–96 (2003)

    Article  ADS  Google Scholar 

  3. K. Cooper, C.S. Sumithrarachchi, D.J. Morrissey, A. Levand, J.A. Rodriguez, G. Savard, S. Schwarz, B. Zabransky, Extraction of thermalized projectile fragments from a large volume gas cell. Nucl. Instrum. Methods Phys. Res. A 763, 543–546 (2014)

    Article  ADS  Google Scholar 

  4. B.R. Barquest, An advanced ion guide for beam cooling and bunching for collinear laser spectroscopy of rare isotopes. Ph.D. Thesis, Michigan State University, 2014

    Google Scholar 

  5. S. Bustabad, G. Bollen, M. Brodeur, D.L. Lincoln, S.J. Novario, M. Redshaw, R. Ringle, S. Schwarz, A.A. Valverde, First direct determination of the 48Ca double-β decay Q value. Phys. Rev. C 88, 022501 (2013)

    Article  ADS  Google Scholar 

  6. M. Redshaw, G. Bollen, M. Brodeur, S. Bustabad, D.L. Lincoln, S.J. Novario, R. Ringle, S. Schwarz, Atomic mass and double-β-decay Q value of 48Ca. Phys. Rev. C 86, 041306 (2012)

    Article  ADS  Google Scholar 

  7. A.A. Valverde, G. Bollen, K. Cooper, M. Eibach, K. Gulyuz, C. Izzo, D.J. Morrissey, R. Ringle, R. Sandler, S. Schwarz, C.S. Sumithrarachchi, A.C.C. Villari, Penning trap mass measurement of 72Br. Phys. Rev. C 91, 037301 (2015)

    Article  ADS  Google Scholar 

  8. K. Gulyuz, J. Ariche, G. Bollen, S. Bustabad, M. Eibach, C. Izzo, S.J. Novario, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, A.A. Valverde, Determination of the direct double-β-decay Q value of 96Zr and atomic masses of 90−92, 94, 96Zr and 92, 94−98, 100Mo. Phys. Rev. C 91, 055501 (2015)

    Article  ADS  Google Scholar 

  9. D.L. Lincoln, J.D. Holt, G. Bollen, M. Brodeur, S. Bustabad, J. Engel, S.J. Novario, M. Redshaw, R. Ringle, S. Schwarz, First direct double-β-decay Q-value measurement of 82Se in support of understanding the nature of the neutrino. Phys. Rev. Lett. 110, 012501 (2013)

    Article  ADS  Google Scholar 

  10. A.A. Valverde, G. Bollen, M. Brodeur, R.A. Bryce, K. Cooper, M. Eibach, K. Gulyuz, C. Izzo, D.J. Morrissey, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C.S. Sumithrarachchi, A.C.C. Villari, First direct determination of the superallowed β-decay Q EC value for 14O. Phys. Rev. Lett. 114, 232502 (2015)

    Article  ADS  Google Scholar 

  11. C. Izzo, G. Bollen, S. Bustabad, M. Eibach, K. Gulyuz, D. Morrissey, M. Red-shaw, R. Ringle, R. Sandler, S. Schwarz, A. Valverde, A laser ablation source for offline ion production at LEBIT. Nucl. Instr. Meth. Phys. Res. B 376, 60–63 (2016). Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), Grand Rapids, MI, 11–15 May 2015

    Article  Google Scholar 

  12. S.E. Bustabad, From fundamental fullerenes to the cardinal calcium candidate: the development of a laser ablation ion source and its diverse application at the LEBIT facility. Ph.D. Thesis, Michigan State University, 2014

    Google Scholar 

  13. R.M.E.B. Kandegedara, G. Bollen, M. Eibach, N.D. Gamage, K. Gulyuz, C. Izzo, M. Redshaw, R. Ringle, R. Sandler, A.A. Valverde, β-decay Q values among the A = 50 Ti-V-Cr isobaric triplet and atomic masses of 46, 47, 49, 50ti, 50, 51v, and 50, 52−−54Cr. Phys. Rev. C 96, 044321 (2017)

    Google Scholar 

  14. N.D. Gamage, G. Bollen, M. Eibach, K. Gulyuz, C. Izzo, R.M.E.B. Kandegedara, M. Redshaw, R. Ringle, R. Sandler, A.A. Valverde, Precise determination of the 113Cd fourth-forbidden non-unique β-decay Q value. Phys. Rev. C 94, 025505 (2016)

    Article  ADS  Google Scholar 

  15. M. Eibach, G. Bollen, M. Brodeur, K. Cooper, K. Gulyuz, C. Izzo, D.J. Morrissey, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C.S. Sumithrarachchi, A.A. Valverde, A.C.C. Villari, Determination of the Q EC values of the T = 1∕2 mirror nuclei 21Na and 29P at LEBIT. Phys. Rev. C 92, 045502 (2015)

    Article  ADS  Google Scholar 

  16. T. Sun, High precision mass measurement of 37Ca and developments for LEBIT. Ph.D. Thesis, Michigan State University, 2006

    Google Scholar 

  17. S. Schwarz, G. Bollen, R. Ringle, J. Savory, P. Schury, The LEBIT ion cooler and buncher. Nucl. Instr. Meth. Phys. Res. A 816, 131–141 (2016)

    Article  ADS  Google Scholar 

  18. R. Ringle, G. Bollen, A. Prinke, J. Savory, P. Schury, S. Schwarz, T. Sun, The LEBIT 9.4 T Penning trap mass spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A 604, 536–547 (2009)

    Article  ADS  Google Scholar 

  19. R. Ringle, P. Schury, T. Sun, G. Bollen, D. Davies, J. Huikari, E. Kwan, D. Morrissey, A. Prinke, J. Savory, S. Schwarz, C.S. Sumithrarachchi, Precision mass measurements with LEBIT at MSU. Int. J. Mass Spectrom. 251, 300–306 (2006)

    Article  Google Scholar 

  20. P. McIntyre, Y. Wu, G. Liang, C.R. Meitzler, Study of Nb3Sn superconducting joints for very high magnetic field NMR spectrometers. IEEE Trans. Appl. Supercond. 5, 238–241 (1995)

    Article  ADS  Google Scholar 

  21. R. Ringle, G. Bollen, D. Lawton, P Schury, S. Schwarz, T. Sun, The LEBIT 9.4 T Penning trap system. Eur. Phys. J. A 25, 59–60 (2005)

    Article  Google Scholar 

  22. L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986)

    Article  ADS  Google Scholar 

  23. L.S. Brown, G. Gabrielse, Precision spectroscopy of a charged particle in an imperfect Penning trap. Phys. Rev. A 25, 2423–2425 (1982)

    Article  ADS  Google Scholar 

  24. G. Gabrielse, The true cyclotron frequency for particles and ions in a Penning trap. Int. J. Mass Spectrom. 279, 107–112 (2009)

    Article  Google Scholar 

  25. G. Bollen, H.-J. Kluge, M. König, T. Otto, G. Savard, H. Stolzenberg, R.B. Moore, G. Rouleau, G. Audi, I. Collaboration, Resolution of nuclear ground and isometric states by a Penning trap mass spectrometer. Phys. Rev. C. 46, R2140–R2143 (1992)

    Article  ADS  Google Scholar 

  26. P. Schury, High precision mass measurements near N = Z = 33. Ph.D. Thesis, Michigan State University, 2007

    Google Scholar 

  27. J. Savory, High-precision mass measurement of N ≃ Z ≃ 34 nuclides for rp-process simulations and developments for the LEBIT facility. Ph.D. Thesis, Michigan State University, 2009

    Google Scholar 

  28. R. Ringle, T. Sun, G. Bollen, D. Davies, M. Facina, J. Huikari, E. Kwan, D.J. Morrissey, A. Prinke, J. Savory, P. Schury, S. Schwarz, C.S. Sumithrarachchi, High-precision Penning trap mass measurements of 37, 38Ca and their contributions to conserved vector current and isobaric mass multiplet equation. Phys. Rev. C 75, 055503 (2007)

    Article  ADS  Google Scholar 

  29. G. Bollen, S. Becker, H.-J. Kluge, M. König, R. Moore, T. Otto, H. Raimbault-Hartmann, G. Savard, L. Schweikhard, H. Stolzenberg, ISOLTRAP: a tandem Penning trap system for accurate on-line mass determination of short-lived isotopes. Nucl. Instr. Meth. Phys. Res. A 368, 675–697 (1996)

    Article  ADS  Google Scholar 

  30. K. Blaum, High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1–78 (2006)

    Article  ADS  Google Scholar 

  31. A.A. Kwiatkowski, G. Bollen, M. Redshaw, R. Ringle, S. Schwarz, Iso-baric beam purification for high precision Penning trap mass spectrometry of radioactive isotope beams with swift. Int. J. Mass Spectrom. 379, 9–15 (2015)

    Article  Google Scholar 

  32. A.A. Kwiatkowski, High-precision mass measurements of 32si and developments at the LEBIT facility. Ph.D. Thesis, Michigan State University, 2011

    Google Scholar 

  33. A.G. Marshall, T.C.L. Wang, T.L. Ricca, Tailored excitation for Fourier transform ion cyclotron mass spectrometry. J. Am. Chem. Soc. 107, 7893–7897 (1985)

    Article  Google Scholar 

  34. S. Guan, A.G. Marshall, Stored waveform inverse Fourier transform (swift) ion excitation in trapped ion mass spectrometry: theory and applications. Int. J. Mass Spectrom. Ion Process. 157, 5–37 (1996)

    Article  ADS  Google Scholar 

  35. G. Bollen, R.B. Moore, G. Savard, H. Stolzenberg, The accuracy of heavy-ion mass measurements using time of flight-ion cyclotron resonance in a Penning trap. J. Appl. Phys. 68, 4355–4374 (1990)

    Article  ADS  Google Scholar 

  36. M. König, G. Bollen, H.-J. Kluge, T. Otto, J. Szerypo, Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. 142, 95–116 (1995)

    Article  ADS  Google Scholar 

  37. G. Gräff, H. Kalinowsky, J. Traut, A direct determination of the proton electron mass ratio. Z. Phys. A 297, 35–39 (1980)

    Article  ADS  Google Scholar 

  38. N.R. Daly, Scintillation type mass spectrometer ion detector. Rev. Sci. Instrum. 31, 264–267 (1960)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valverde, A.A. (2019). The LEBIT Facility and Penning Traps. In: Precision Measurements to Test the Standard Model and for Explosive Nuclear Astrophysics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-30778-3_3

Download citation

Publish with us

Policies and ethics